数学说课稿

时间:2025-02-13 10:02:56 说课稿 我要投稿
立即下载

【精品】数学说课稿模板集合7篇

  作为一名教学工作者,可能需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的数学说课稿7篇,欢迎阅读,希望大家能够喜欢。

【精品】数学说课稿模板集合7篇

数学说课稿 篇1

  一、找准学生学习新知的“最近发展区”,在大背景下认识分数

  1、分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。教学时,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。

  2、以往我们在初次教学分数时,总是以单个的物体的进行平均分,然后“半个”无法用整数表示的时候就引入了分数,优点是这样分数出现的实际需要性能够凸现,学生对分数的产生印象深刻;缺点是这样以单个的物体入手,学生对分数的认识受到局限,会导致到高段学习分数的意义的时候,对单位“1”难以理解和接受。其实“一半”和“半个”是有区别的,只有“半个”才用分数表示是不全面的。因此,我在分数引入的时候,请学生说身边一些事物的一半,发现日光灯是11个,一半一下子无法说出来。同时一个圆的一半是多少也无法说清。然后,引出“所有事物的一半我们只用一个数表示出来”。从而引入分数二分之一,这样对于分数的.认识放在了一个宽广的背景下来学习,学生体会到任何事物的一半都可以用一个1/2来表示。

  二、加强直观教学,降低认知难

  分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,教师充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,尽管学生在正方形纸上这出了几个几分之一的分数,并且用分数表示出来,但是学生在比较分数大小的时候,还是受到整数认识的影响,认为1/32比1/8大,于是课件显示猪八戒分西瓜的过程,学生直观的认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。

  三、根据学生年龄特征,创设有趣的问题情境

  对于小学生来说,数学学习往往是他们自己生活经验中对数学现象的一种“解读”.在教学中,如果能密切联系学生的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,那么学起来必然亲切、有趣、易懂了。学生的好胜心理强,教师在学生认识了1/4。纸上折了1/4后,谁还能折出其它分子是1的分数,学生动手积极性很高,纷纷折出了其它分数。当问谁折的分数大的时候学生就更愿意比了。起初,学生对分数的比较这一知识停留在比较表面、比较肤浅的水平上。他们用整数的大小比较方法来比较分数,教师也不做出判断,而是利用学生喜欢听的故事,将知识蕴于故事中,在听故事、看课件演示中,使学生主动得构建自己的知识,而不是被动地去接受知识。当回过头来再比谁折的分数大的时候,学生都笑了。而教师也不必再多说什么,学生已经自己推翻了先前的认识。

  在整个课堂预设时,想的比较完美,事实上在真正上这堂课的时候有很多的缺憾、很多教学环节还有待完善。从整体上认识分数,对三年级学生而言是否要求拔得过高,在折分数操作时是否需要及时的比较等等。我想只有一次次积累、一次次思考,才能上出真正平实而有效的数学课。

数学说课稿 篇2

各位领导、各位老师:

  大家好!

  我设计的课件《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

  本节课的教学目标是:

  1. 要使学生明确圆面积的概念,理解和掌握圆面积公式的推导及应用。

  2. 通过学生操作,发现推导圆面积的公式。

  3. 结合知识的教学,渗透转化极限的数学思想。

  本节课的重点是:圆面积概念的建立,公式的推导及应用。

  难点是:转化和极限两种数学思想的渗透。

  考虑到本节课是几何前后知识的重要纽带,教学内容相对抽象,学生的年龄特点,导致抽象逻辑思维较差,还是以形象直观思维为主,所以使用多媒体作为辅助教学手段,变抽象为直观,为学生提供丰富的感性材料,促进学生对知识的感知,帮助学生理解,激发学生学习的兴趣。

  本课使用多媒体,设计时主要想突破以下几个问题:

  一. 明确概念:

  圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

  二. 以旧促新

  明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  三. 转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的`平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。

  四. 公式推导

  平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2 =πr h=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r =πr2。

  此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画 》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2 ,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

  五.公式的应用.

  探究出公式,要学会应用,并能把利用所学的知识解决生活中的实际问题,培养学生解决实际问题的能力.先引导学生观察面积公式,思考要想计算圆的面积应该知道哪些条件?让学生讨论.练习安排了三个层次的练习:

  第一:看图计算面积。主要是巩固新知,强化公式的应用。两个图一个是已知半径,另一个是已知直径。

  第二:变式练习。学生根据公式一般认为计算圆的面积,必须知道半径,否则无法计算,这一题是已知r2=5平方厘米。根据目前知识,学生没有能力求出半径,怎么办?激起学生的认知冲突,引导学生讨论,就会发现,除了知道r,可以求出面积,若能知道r2,不必求出半径,直接利用公式计算面积,打破学生的思维定势,全面理解公式,达到对公式的进一步认识。

  第三:实践练习。圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。

  至此,课件设计的初衷,概念—旧知—转化—推导—应用五个任务就算完成了,这也是设计时个人的一些想法,敬请大家批评指正,谢谢!

数学说课稿 篇3

  一、教材分析

  1.教材中的地位及作用

  本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。

  2.教学目标的确定及依据

  平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。

  (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;

  ②掌握双曲线标准方程中的几何意义,理解双曲线的渐近线的概念及证明;

  ③能运用双曲线的几何性质解决双曲线的一些基本问题。

  (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;

  ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。

  (3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。

  3.重点、难点的确定及依据

  对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。

  4.教学方法

  这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。

  渐近线是双曲线特有的

  性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。

  例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

  二、教学程序

  (一).设计思路

  (二).教学流程

  1.复习引入

  我们已经学习过椭圆的标准方程和双曲线的标准方程,以及椭圆的简单的几何性质,请同学们来回顾这些知识点,对学习的旧知识加以复习巩固,同时为新知识的学习做准备,利用多媒体工具的先进性,结合图像来演示。

  2.观察、类比

  这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,首先观察双曲线的形状,试着按照椭圆的几何性质,归纳总结出双曲线的几何性质。一般学生能用类似于推

  导椭圆的几何性质的方法得出双曲线的范围、对称性、顶点、离心率,对知识的理解不能浮于表面只会看图,也要会从方程的角度来解释,抓住方程的本质。用多媒体演示,加强学生对双曲线的简单几何性质范围、对称性、顶点(实轴、虚轴)、离心率(不深入的讲解)的巩固。之后,比较双曲线的这四个性质和椭圆的性质有何联系及区别,这样可以加强新旧知识的联系,借助于类比方法,引起学生学习的兴趣,激发求知欲。

  3.双曲线的渐近线的发现、证明

  (1)发现

  由椭圆的几何性质,我们能较准确地画出椭圆的`图形。那么,由双曲线的几何性质,能否较准确地画出双曲线的图形为引例,让学生动笔实践,通过列表描点,就能把双曲线的顶点及附近的点较准确地画出来,但双曲线向远处如何伸展就不是很清楚。从而说明想要准确的画出双曲线的图形只有那四个性质是不行的。

  从学生曾经学习过的反比例函数入手,而且可以比较精确的画出反比例函数的图像,它的图像是双曲线,当双曲线伸向远处时,它与x、y轴无限接近,此时x、y轴是的渐近线,为后面引出渐近线的概念埋下伏笔。从而让学生猜想双曲线有何特征?有没有渐近线?由于双曲线的对称性,我们只须研究它的图形在第一象限的情况即可。在研究双曲线的范围时,由双曲线的标准方程,可解出,,当x无限增大时,y也随之增大,不容易发现它们之间的微妙关系。但是如果将式子变形为,我们就会发现:当x无限增大,逐渐减小、无限接近于0,而就逐渐增大、无限接近于1();若将变形为,即说明此时双曲线在第一象限,当x无限增大时,其上的点与坐标原点之间连线的斜率比1小,但与斜率为1的直线无限接近,且此点永远在直线的下方。其它象限向远处无限伸展的变化趋势就可以利用对称性得到,从而可知双曲线的图形在远处与直线无限接近,此时我们就称直线叫做双曲线的渐近线。这样从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。

  利用由特殊到一般的规律,就可以引导学生探寻双曲线(a>0,b>0)的渐近线,让学生同样利用类比的方法,将其变形为,,由于双曲线的对称性,我们可以只研究第一象限向远处的变化趋势,继续变形为,,可发现当x无限增大时,逐渐减小、无限接近于0,逐渐增大、无限接近于,即说明对于双曲线在第一象限远处的点与坐标原点之间连线的斜率比小,与斜率为的直线无限接近,且此点永远在直线下方。其它象限向远处无限伸展的变化趋势可以利用对称性得到,从而可知双曲线(a>0,b>0)的图形在远处与直线无限接近,直线叫做双曲线(a>0,b>0)的渐近线。我就是这样将渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。

  (2)证明

  如何证明直线是双曲线(a>0,b>0)的渐近线呢?

  启发思考①:首先,逐步接近,转换成什么样的数学语言?(x→∞,d→0)

  启发思考②:显然有四处逐步接近,是否每一处都进行证明?

  启发思考③:锁定第一象限后,具体地怎样利用x表示d

  (工具是什么:点到直线的距离公式)

  启发思考④:让学生设点,而d的表达式较复杂,能否将问题进行转化?

  分析:要证明直线是双曲线(a>0,b>0)的渐近线,即要证明随着x的增大,直线和曲线越来越靠拢。也即要证曲线上的点到直线的距离

  |mQ|越来越短,因此把问题转化为计算|mQ|。但因|mQ|不好直接求得,因此又可以把问题转化为求|mN|。

  启发思考⑤:这样证明后,还须交代什么?

  (在其他象限,同理可证,或由对称性可知有相似情况)

  引导学生层层深入的进行探究,从而更深刻的理解双曲线的渐近线的发现及证明过程。

  3)深化

  再来研究实轴在y轴上的双曲线(a>0,b>0)的渐近线方程就会变得容易很多,此时可利用类比的方法或者利用对称性得到焦点在y轴上的双曲线的渐近线方程即为。

  这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精确的画出双曲线。但是如果仔细观察渐近线实质就是双曲线过实轴端点、虚轴端点,作平行与坐标轴的直线所成的矩形的两条对角线,数形结合,来加强对双曲线的渐近线的理解。

  4.离心率的几何意义

  椭圆的离心率反映椭圆的扁平程度,双曲线离心率有何几何意义呢?不难得到:,这是刚刚学生在类比椭圆的几何性质时就可以得到的简单结论。通过对离心率的研究,同样也可以使学生进一步加深对渐近线的理解。

  由等式,可得:,不难发现:e越小(越接近于1),就越接近于0,双曲线开口越小;e越大,就越大,双曲线开口越大。所以,双曲线的离心率反映的是双曲线的开口大小。通过对这些性质的探究,就可以更好的理解双曲线图形与这些基本量之间的关系,更加准确的作出双曲线的图形。

  5.例题分析

  为突出本节内容,使学生尽快掌握刚才所学的知识。我选配了这样的例题:

  例1.求双曲线9x2-16y2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的在于拿到一个双曲线的方程之后若不是标准式,要先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量。本题求渐近线的方程的方法:(1)直接根据渐近线方程写出;(2)利用双曲线的图形中的矩形框架的对角线得到。加强对于双曲线的渐近线的应用和理解。

  变1:求双曲线9y2-16x2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的:和上题相同先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量;但求渐近线时可直接求出,也可以利用对称性来求解。

  关键在于对比:双曲线的形状不变,但在坐标系中的位置改变,它的那些性质改变,那些性质不变?试归纳双曲线的几何性质

  变2:已知双曲线的渐近线方程是,且经过点(,3),求双曲线的标准方程。选题目的:在已知双曲线的渐近线的前提下

数学说课稿 篇4

  说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

  (3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)启发引导学生思考、分析、实验、探索、归纳。

  (2)采用“从特殊到一般”、“从具体到抽象”的方法。

  (3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

  (4)多媒体演示法。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的'时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

  (3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

  因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.

  方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

  这样可以充分调动学生自主学习的积极性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

  作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业 :(1)完成P178 A组1、2、3题

  (2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

数学说课稿 篇5

  一、说教材分析

  《吃西瓜》是北师大版三年级下册第五单元第四课时的内容,它是在学生认识了分数并理解了分数的意义的基础上学习的,它为学生以后学习复杂的分数计算奠定了基础。

  教学目标:

  1、 知识目标:通过观察,初步理解同分母分数加减法的算理,并能正确计算。

  2、 能力目标:借助数形结合培养学生观察和分析,解决问题的能力。

  3、 情感目标:体验数学活动充满着创造与探索,感受数学的严谨性,并进行母爱教育。 根据数学目标,我确定本课教学的重点是探索同分母分数加减法的运算,其中探索用1减去一个分数的运算时本节课的教学难点。

  二、说教法与学法

  根据《数学课程标准》中变注重知识获得的结果为知识获得的过程的教学理念,我以学生发展为立足点,以小组合作、自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用直观演示、设疑激趣、实际操作等教学方法,引导学生动手操作、观察辨析、自主探索、合作交流,让学生全面、全程地参与到每个教学环节中,充分体现课堂教学的活动性与主体性。

  三、说教学过程

  新课标倡导学生是数学学习的主人,教师是数学学习得组织者、引导着和合作者,以及动手实践,自主探索与合作交流史数学学习的重要方式的基本理念。这一节课,我创造性地使用教材,把整个教学活动设置成一个个故事情节,贯穿始终。

  (一) 创设情境,激活思维

  课一开始,我从大熊和小熊吃西瓜的故事引入(课件),通过创设这样的一个温馨有趣的情境,一方面极大地激发了学生的学习兴趣,另一方面也为学生主动参与学习活动明确了方向。

  (二) 数形结合,学习新知

  第一个知识点:学习同分母分数(分数小于10)的加法运算。 数学史,我主学生尝试列算式,重点探索82+8 3 =?"怎么算。在探索过程中我分3个阶段进行。

  (1) 学生首先拿出圆形纸折一折,涂一涂,然后四个小组互相讨论,寻找答案。这个环节是 学生独立探索阶段,教学中,我除了对互相合作的学生进行必要的指导外,还格外注意倾听学生们的思考方式,并对得出不同答案的学生给予大力表扬和鼓励。这样是学生的口头表达能力得到很好的锻炼,个性得到充分的张扬。

  (2) 课件演示阶段。我认为在探索同分母分数加法的算法时,借助图形直观,算理和算法就 不难被学生理解和掌握了,而数形结合本身也是解决问题的重要策略,请看我给学生演示的课件。

  (3) 得出结论阶段。这是最重要的一个环节,在教学中,我引导学生用自己的语言解释 82+83=8 5 的计算过程和结果,并进一步让学生解释算理,是一个既有挑战性,又很有吸引力,且能够加深学生对同分母分数加法运算理解的活动。 第二个知识点:学习同分母分数(分母小于10)减法的运算 因为有了同分母分数加法的经验,所以这部分内容我就放手让学生观察、比较、发现只是并理解掌握,从而培养学生知识的迁移能力。我分3个阶段进行。

  1、 同桌讨论,围绕用什么方法算,怎么算进行交流。

  2、 比一比,折一折。

  3、 课件演示,理解算理。 这一环节中,出现了算式1- 8 5 =?是本课教学的难点,我通过组织学生合作讨论,配合直观生动的课件进行演示,充分激发学生学习的兴趣,调动学生主动参与的积极性,是学生在知识的产生和发展的过程中,探索、感悟出1减去一个分数的运算规律,对有困难的学生,我结合情境知道他们理解1= 8 8 ,用化未知的策略解决问题。

  (三) 总结同分母分数加减法的`计算规律。

  我结合板书,引导学生总结算理和算法,并鼓励学生看书质疑,使学生在吃西瓜的情境中,心情愉悦,尽情地展示他们的聪明才智,真正体验到学习数学的成功与快乐。

  三、巩固练习,强化新知。

  1、教材第64页练一练第一题(课件) 此题我采用多种直观凡事来表示分数加减法的运算,并鼓励学生迎接挑战,认真审题,分析线段图,是学生在数形结合的思想方法中,独立进行分数加减法计算。

  2、教材第64页练一练第二题。 此题是学生已经领悟同分母分数加减法的规律,初步摆脱对图形直观的依赖进行的练习。我将此题设计为破密码取宝物的游戏,激发学生积极参与得兴趣。

  3、 抢答。(将题目做成卡片,以开火车的形式进行。)

  四、课外延伸。

  结合本课创设的故事情境,让学生谈谈自己是怎样爱妈妈的。

  五、教学特色及效果

  新课标倡导学生的数学学习活动应该是一个生动活泼的、主动地和富有个性的过程。 这节课的教学,我始终让学生处于一种积极、活泼、愉悦的状态,让学生有自己的时间去探索、合作、体验、创造,完成各种教学活动。注重让学生参与到知识的发现和形成的过程,是学生学会自主学习,培养了学生的创造精神与合作意识,激发了学生的思维和强烈的求知欲,是整个课堂意浓情酣。

数学说课稿 篇6

  一、说教材

  教学内容:

  我讲授的内容是义务教育课程标准小学数学六年级上册《比的应用》第一课时,主要就是按比例分配问题。按比例分配是把比的知识应用于解决相关的实际问题的一个课例。即把一个数量按照一定的比进行分配。它是在学生学习了比与分数的联系,已掌握“平均分”和“分数应用题”的基础上进行教学的延伸。这样安排符合学生的思维习惯,方便于学生对知识的迁移,也有利于加强知识间横向和纵向的联系,为今后学习正比例知识埋下伏笔。

  教学目标:

  (1)知识方面:使学生理解按比例分配的意义;掌握按比例分配应用题的特征及解题方法.

  (2)能力方面:培养学生观察、归纳和语言表达能力及分析问题、解决问题的能力。

  教学重点:

  1、理解按一定的比来分配一个数量。

  2、根据题中所给的比。掌握各部分占总量的几分之几,能熟练的用乘法求各部分量。

  教学难点:

  正确分析,灵活解决按比分配的实际问题。

  二、说学情

  对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,

  甚至解决过,每个学生都有一定的体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

  三、说教法和学法

  教师努力去营造一个愉快、和谐、民主的课堂气氛,激发学习兴趣,调动学生学习的主动性,形成和谐的课堂气氛,从而有效地引导学生主动探讨新知识。

  本课采取小组合作、交流探索的学习形式,引导学生主动与他人合作交流。并学会比较、分析、归纳、综合,获得数学知识与技能的方法,尽可能结合学生的生活经验,为学生提供现实情景和活跃的情趣,贴近学生的思维调动区,让学生自主探究、合作交流,体会数学与生活的联系。

  教学过程:

  第一个环节:创设情境,初步感知。

  新课标提出:通过学生关注和感兴趣的`实例作为认识的背景,激发学生的求知欲,使得学生感受到数学就在自己的身边,感受到数学来源于生活,生活离不开数学。所以我设计了如下问题:一班30人,二班20人。把这些橘子分给1班和2班。怎样分合理?

  这个环节让学生说出分的方法(平均分和按人数来分),进而引出课题——《比的应用》。这样使学生意识到抽象的数学知识可以在现实生活中找到活生生的原型,“现实生活中蕴含着大量的数学信

  息”,感受到生活经验数学化与数学经验生活化。有利于学生掌握知识的发展变化与延伸,为分散难点起着积极的迁移作用。

  第二个环节:探索方法,建立模型。

  1、出示课本情境图。如果把这筐橘子按3:2分,怎么去分?

  教师引导:在这儿分橘子时,3:2表示什么意思?让学生说说。(一班最少分3个时,二班分2个)。接着往下分,怎么去分呢?同桌互相讨论。汇报,师生填表。从表格中的数据,你发现了什么?(大班分的橘子数扩大到原来的几倍,二班分的橘子数也扩大到原来的几倍。不管怎么分,每次都按3:2来分的。)

  2、出示课本主题图。如果把140个橘子按3:2来分,怎么去分?

  因为有了前面分橘子的基础。学生很快就会完成表格。这就是列表法解数学题。

  3、利用课件帮助理解、掌握分配问题的结构特点。

  接下来引导学生分析题中数量关系:题目要分配什么?按照什么分配?

  重点思考讨论:从3:2这个比中,你能知道什么?接下来鼓励小组合作尝试多种方法解答,重点理解按比分配的方法。

  2、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

  这样设计为学生提供自主探索的空间。所以在教学中可以灵活地依据提出的方法调换教学顺序,并引导学生掌握两种不同的解题方法。安排学生的小组讨论方式能使学生一开始就畅所欲言,把几种不

  同思路比较和联系起来,在理解的基础上才能更好的掌握方法,并注意培养学生的检验能力。

  第三个环节:多层训练,形成技能。

  练习是数学课堂教学一个重要环节,我设计的练习题力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融合恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。

  1、基础练习

  2、提升练习

  数学源于生活,用于生活。所以我设计了《营养搭配》这么一道题用以拓展延伸。这一环节着重培养学生发现问题,解决问题的能力。同时也使学生明白,数学来源于生活,生活也离不开数学。并及时的进行思想教育。让学生都有一个健康的身体。

  第四个环节:回顾整理,反思提升

  你学会了什么知识?掌握了哪些方法?

  这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。

数学说课稿 篇7

  各位评委、各位老师:

  大家下午好!

  我说课的内容是《切线的判定》。我将从教材分析、学情分析、目标重难点分析、教法学法分析、教学过程、教学评价六个方面阐述我对本节课的设计意图。

  一、教材分析

  1、教材的地位和作用

  本节内容选自九下第三章《圆》第五节《直线和圆的位置关系》的第二课时《切线的判定》。本课时内容是在学习了直线与圆的位置关系的基础上,进一步探究直线和圆相切的条件,并为探究切线长定理和切割线定理而作准备的,它在圆的学习中起着承上启下的作用,在整个初中几何学习中起着桥梁和纽带的作用。因此,它是几何学习中必不可少的知识工具。

  2、本课主要知识点

  (1)判定一条直线是否为圆的切线

  (2)过圆上一点画圆的切线。

  (3)作三角形的内切圆。

  3、教材整改

  结合教学实际及中考要求,我对教材内容略作了调整。当探究出判定后,为了提高学生将所学的知识应用于实际,我特增加了例1和例2,让学生总结出"证明一条直线是圆的切线时,常常添加辅助线的两种方法",帮助学生进一步深化理解切线的判定定理,达到学以致用。

  同时我对学案也作了调整。将在后面的学习过程中得以具体的体现。

  二、学情分析

  1、已有的知识能力

  学生已经掌握了等边三角形的性质,直角三角形的性质,圆周角的知识,与圆有关的性质,切线的定义,切线的性质等。

  2、已有的数学能力

  具有初步的逻辑推理能力和基本的作图能力等。

  3、已有的学习能力

  预习能力、小组合作能力、讲解能力、概括总结能力,评价能力等。

  三、目标、重难点分析

  基于上述情况,结合《新课程标准》和我校学生的.实际情况,特制定了如下教学目标。(一)目标分析

  1、知识与技能

  (1)能判定一条直线是否为圆的切线。

  (2)会过圆上一点画圆的切线。

  (3)会作三角形的内切圆。

  2、过程与方法

  (1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力。

  (2)会过圆上一点画圆的切线,训练学生的作图能力。

  3、情感态度与价值观

  (1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点。

  (2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题。

  设计意图:学习目标是在对教材分析和学情分析基础上设定,它的设定一定既符合大纲的知识、能力要求,又要平行你的学生的能力水平。因此,承上:它起着承载知识的生长点以及与旧知识的联系;还要联系学生已有的知识、能力和方法,这些目标针对你的学生一定是最能实现和达到的;启下:它起着教师对教学过程设计中的起点在何处,这个起点是否针对了你自己将要面对的本堂课的学生,是否符合所教学生的认知特点和心理特点。还决定了你的整个教学设计如何来落实完成知识、发展过程、突破能力。

  本课时内容都是围绕切线的判定来展开的,根据教学目标及学生的实际情况,制定了如下重难点:

  (二)重难点分析

  1、教学重点:

  探索圆的切线的判定方法,并能运用。

  突出措施:学生通过所选取的四个图形,以问题链的形式,并结合已学过的直线与圆的位置关系及切线的定义,以小组内交流,组间互评,老师点评等形式得出判定。并全班齐读判定,勾画圈点关键词。并让学生回顾切线判定的另外两种方法,加深对判定的理解记忆。

  2、教学难点:

  由于圆这一章内容平时生活中见得比较少,切线又比较抽象,所以基于学情我确定如下为教学难点。

  探索圆的切线的判定方法。

  作三角形内切圆的方法。

  突破措施:主要通过将问题细化,通过在学习准备中提前抛出问题,通过学生分组学习、练习、学生板演、学生讲解等方式突破难点。

  四、教法与学法分析:

  教法上:我主要采用以学案为载体的DJP教学模式,充分发挥学生的主观能动性。以学生自主学习为主,教师引导学生自主探究,并帮助学生课堂讲解,并赋以合理的评价,激发学生的学习兴趣,调动学生课堂积极性。同时还结合了启发、讲解、评价综合的教法。

  学法上:充分发挥小组作用,采取合作学习的形式,在小组内进行交流、讨论、讲解,再面向全班讲解,让学生自主学习,构建知识体系。

  五、教学过程

  本节课采用以学案导学的DJP教学模式,这种教学模式主要有以下六个环节:

  教学活动设计如下:

  【达标检测】

  1、判断直线l是否是⊙O的切线,并说明理由。

  2、如右图,∠AOB=30° ,M为OB上任意一点,以M为圆心,

  2cm为半径作⊙M,则当OM=________时,OM与OA相切。

  3、如右图,AB是⊙O的直径,∠ABT=45° ,AT=AB.

  求证:AT是⊙O的切线。

  4、如右图:已知直线AB经过圆O上的点C, 并且OA=OB,CA=CB, 求证:直线AB是圆O的切线。

  设计意图:

  (1)、为了检测学生对本节课知识的掌握情况,教师及时反馈了解学生的学习效果。

  (2)、为学习下一课时的内容作知识准备。

  (五)课后作业

  C类: ①课本P129随堂练习2

  ②课本P129习题1

  B类: ①课本P129随堂练习1,2

  ②课本P129习题1,2

  A类: ①课本P129随堂练习2

  ②课本P129习题1,2,试一试

  ③上网查阅整理切线在判定在相关资料,特别是在生活中的应用。

  设计意图:

  设计意图:作业分层布置,在完成达标的基础上拓宽和加深,加强学生综合能力和创造才能的培养。也是尊重学生个体差异的表现。

  (六)板书设计

  优美清晰、图象规范、色彩艳丽的幻灯片,不能代替规范的板书,它从静态体现知识之间的联系,有利于知识的系统化。故而设计板书如下:

  §3.8 切 线 的 判 定

  一、切线的三种判定方法:

  1、直线与圆只有唯一的公共点;

  2、圆心到一条直线的距离等于半径,这条直线是圆的切线;

  3、过半径的外端并且与半径垂直的直线与圆相切

  二、内切圆的定义三、反思小结

  五、教学反思

  本节课针对学生已有的知识技能和活动经验,在学案的具体运用中,课前预习学案,让学生有足够的时间独立学习、思考完成学案,为小组讨论交流、展示讲解做充分地准备。教师可以通过检查学案或小组统计等方式了解学生依案自学的情况,有针对性的精讲。为了更好的发挥学案的作用,充分调动学生的学习积极性,我还借助小组的量化评价体系,给每个小组打分。

  设计意图:

  学案能够帮助学生课前自学、课堂学习、课后复习,是教师启发、引导、讲解、指导学生数学学习的工具与方案。

【数学说课稿】相关文章:

数学说课稿08-31

数学活动说课稿10-23

初中数学的说课稿04-24

小学数学说课稿05-20

小学数学说课稿10-03

初中数学说课稿08-26

人教版初中数学说课稿01-20

高中数学经典说课稿09-30

数学说课稿(15篇)12-02

高二数学说课稿07-11