《圆的周长》教学设计
作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。如何把教学设计做到重点突出呢?以下是小编精心整理的《圆的周长》教学设计,仅供参考,大家一起来看看吧。
《圆的周长》教学设计1
教学内容:新课标人教版小学数学六年级上册第四单元p62----64页
学习目标:
知识与技能: 理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
教学重难点和关键:
重点:推导圆周长的计算方法。
难点:学生以合作实践,讨论交流的方式探究圆周率的含义。
关键:理解圆的周长与直径的关系。
教学具的准备:
多媒体课件,模型圆,几个直径不同的圆形,线、直尺等。
教学过程:
(一)复习铺垫
出示课件(广场,找学过的平面图形)为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)由情境图,(课件出示广场图从中找学过的平面图引入新课。生,找出了圆。师,如果沿圆形喷水池走一周的长度,实际就是求圆的什么呢?生:周长。师:上节课大家对圆,有了很多的了解,今天我们继续探究有关圆的知识。)(板书:圆的周长通常用字母C)
同学心里已经知道圆的周长指的那部分,那你们拿出自己的圆片,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
既然圆的.周长是曲线那能不能用直尺直接测量呢?
2、测量圆的周长
(1)、这条曲线的长度你有没有办法测出它的长度呢?(让学生独立思考10秒左右)
(2)、然后四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)、小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(用滚动、绕绳的方法)。(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
(4)、今天老师也带来了圆,想请一位同学上来测量一下,谁愿意?
(5)、演示:转动的风车,形成圆形,问:你怎么不量呢?(这个圆会动,很难测量……如果把地球近似地看成一个球,绕赤道一周的长度是多少,这一周的长度你能测量出来吗?
(6)、小结:看来象这样动态的圆或很大的圆测量其周长确实存在很大的困难,这就需要我们探究出一种像长,正方形周长的计算公式一样普遍使用的方法来解决圆周长的问题。
3.在探究中理解公式(探究圆周长的规律)
(1)设疑激思
同学们想一想正方形的周长和什么有关系?(边长)哪圆的周长又与什么有关呢?( 到底是不是这样呢?我们来看一个实验。)(出示课件 电脑演示:从小到大依次出示2个虚圆)看来圆的周长的确与它的半径有关,与半径有关也就与直径有关,到底有什么样的关系这个问题要同学们自己去发现,请同学们用我们上面的滚动法或绳测法测量手中圆的周长,并算出周长和直径的比值填如下表.)
测量对象
圆的周长(厘米)
圆的直径(厘米)
周长÷直径=
交流实验报告单,得出结论。
师:哪个小组愿意把你们组填写的表汇报一下。(生报数师填表)从他们汇报的数据,同学们发现了什么吗?
生:直径与周长的比值是三点多。
师:其他小组有不同意见或补充吗?
生;虽然圆的大小不一样,但我们算得周长也是直径的3倍多一些。
师:凡是通过测量计算发现你的圆周长是直径的3倍多一些的同学请举手。
师:这说明圆的周长除以直径的商是有规律的。在我们所测量的这些圆中,每个圆的周长都是直径的3倍多一些!如果再换成其他的圆是不是也有这样的规律?请同学们看电脑演示。
通过观察的确是这样,师:同学们真了不起,刚才,同学们测量了大小不同的圆,但却有相同的发现。(圆的周长是它直径的三倍多一些) (板书:圆的周长总是它的直径的3倍多一些。)
(2)认识圆周率
①、实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
②、听了这个故事,你有哪些感受?(我自豪,我骄傲。太了不起了,)师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
③、师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
③ 、同学们通过自己的努力得出了求圆周长的公式,要求圆的周长,需要知道什么条件?(直径)
做一做 同学们现在我们能不能解决转动的风车,形成的圆的周长的问题?如果老师告诉你风车的半径是10厘米,你能算出周长吗?
老师给同学们带来了一个圆桌,它的直径是0.95米,你会算它的周长吗?(例1)
做一做.一辆自行车的车轮半径是0.33米.车轮滚动一周自行车前进多少米?(得数保留两位小数)
(三)巩固练习
1.计算下面各圆的周长。
d=2米 r=6分米 d=1.5厘米 r=1.5厘米
2.判断题
(1)π=3.14 ( )
(2)大圆的圆周率比小圆的圆周率大 ( )
(3)直接是2厘米的圆的周长是 ( )
3.14×2=6.28米
(4)半径3米的圆的周长是
3.14×3=9.42米
3.知识的拓展应用
计算广场圆形喷水池的周长。(计算两个圆的周长,环形,小圆的直径是40米,环宽5米)
(四)评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
《圆的周长》教学设计2
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的`最简整数比:
(1)一个圆的半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
《圆的周长》教学设计3
【教学内容】
《义务教育课程标准试验教科书. 数学》(苏教版)六年制五年级下册第十单元第98-102页,例4,例5和例6及练一练和练习十八。圆的周长,周长计算公式。
【教材分析】
这部分内容是在学生认识圆的基本特征的基础上,引导学生探索并掌握圆的周长公式。首先引导学生从生活经验出发,借助观察、比较进行猜想,再具体描述圆的周长的含义,并让学生通过进一步的思考,认识到圆的周长与直径的关系。最后引导学生根据对测量圆周长活动过程的理解,推导出圆的周长公式。然后让学生应用刚刚掌握的公式计算圆的周长,解决简单的实际问题,巩固对公式的理解。
【教学目标】
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
【教学重点】
圆的周长和圆周率的意义,圆周长公式的推导过程。
[教学难点]
圆周长公式的推导过程。
【教学准备】
多媒体课件、实物投影、圆、绳子、直尺、圆规等。
【教学过程】
一、情境创设,生成问题
1、出示一个正方形花坛和一个圆
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
预设一:看哪个跑得步子多。
预设二:计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系?
预设一:C=(a+b)×2
预设二:C=2a+2b
3、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、探索交流,解决问题
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
预设一:用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。
预设二:把圆放在直尺上滚动一周,直接量出圆的周长。
那么用一条线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
设计意图:引导学生从生活经验出发,借助观察、比较进行猜想:到底怎样测圆的周长。进而激发学生进一步探究圆的周长是如何求出来的兴趣。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的'直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
预设:都是3倍多,不到4倍。
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P102,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d或 C = 2∏r
设计意图:教材通过示意图对这两种方法做了清楚的说明,这有利于学生学会具体的测量圆周长的方法,又能使学生从中体验“化曲为直”的策略。
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车约转动多少周?
小组内想出解决的办法,并在全班交流。
预设一: 已知 d = 20米 求:C = ?
根据 C =πd 20×3.14=62.8(m)
预设二: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m 0.5×3.14=1.57(m)
再求绕花坛一周车约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车约转动40周。
设计意图:引导学生根据圆的周长公式列式解答。这样有利于学生提高综合应用数学知识和方法解决实际简单的实际问题,巩固对公式的理解的能力。
三、巩固应用,内化提高
1、求下列各题的周长。
书本102页练习十八的第1、2题
2、判断正误。
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆,圆的周长是半径的6.28倍。( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
设计意图:通过这些小题的练习,让学生进一步加深对相关知识的理解。
四、回顾整理,反思提升
通过这节课的学习你都知道了什么?还有什么不懂的呢?
《圆的周长》教学设计4
新课标人教版六年级上册第62~64页。
【教学目标】
1、通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。
2、能利用圆的周长的计算公式解决一些简单的数学问题。
3、培养学生的观察、比较、分析、综合及动手操作能力。
4、通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。
难点:理解圆周率的意义。
【教具、学具】
课件、软尺、直尺、绳子、圆形。
【教学过程】
课前交流:请同学们唱一首歌。
(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)
一、创设情景,生成问题
国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。
(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。
(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)
二、探索交流,解决问题。
师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。
师:同桌想一想圆的周长怎样测量?
师:把你的好方法在小组内交流一下。
(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?
(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。
师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。
师演示(线绕圆一周,然后量出线的长度。)
师:还有其他的方法吗?
生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。
师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。
生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。
师:这个办法也很妙!其他同学还有要补充的吗?
生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。
师:你的想法可真不简单!
师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。
师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?
生:能!
师:正方形的周长和什么有关?
生:周长是边长的4倍,师:那么圆的周长和什么有关系呢?
生:圆的直径越长圆越大,所以周长就越长。
师:那周长和直径有怎样的关系呢?
(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)
师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。
师:现在大家通过填写表格发现了什么?
生:在测量中发现,大小不同的圆的周长是不同的。
师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?
生:是由半径(或直径)唯一决定的。
师:圆的周长与直径或半径之间到底存在着怎样的关系?
生:每组算的结果不大一样,但都是3点多。
师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的`周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?
生:一样。
师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。
师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?
我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)
师:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
师:从表中我们可以看出圆的周长÷直径=圆周率
(板书:圆的周长=π×直径)。
如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。
生读:c=πd c=2πr
师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?
生:圆的直径或半径。
(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)
三、回顾整理,反思提升。
这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?
(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。
(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。
教师《圆的周长》教学设计 篇3【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”
【教学目的】
1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。
2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。
3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。
【教学重点】掌握圆周长的计算方法
【教学难点】理解圆周率的意义
【教具、学具准备】
教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。
学具:圆、直尺、小绳。
【教学过程】
1、导入新课。
(1)认识圆的周长。
教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?
(师出示正方形的图形。)
学生指着图形回答上述问题。
生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。
教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。
师:通过手摸正方形周长和圆的周长,你发现了什么?
生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。
老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?
老师一边显示图象一边讲述:
以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。
圆的周长展开后变成了一条线段。
(2)揭示课题。
师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。
(板书课题:圆的周长计算)
【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】
2、学习新知。
(1)学生动手实验,测量圆的周长。
全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。
(学生测量圆的周长,并板书测量的结果。)
师:你们是怎么测量出圆的周长的呢?
生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。
师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?
(老师边说边做手势,同学们笑了。)
生1:不能。
师:还有什么别的方法测量圆的周长吗?
生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。
教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。
教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?
生2:(不好意思地摇摇头)不能了。
师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?
【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】
(2)根据实验结果,探索规律。
教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。
师:这两个圆有什么不同?
生:两个圆的周长长短不同。
师:圆的周长由什么决定的呢?
生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。
师:请认真观察,(教师再演示)这条绳子是这个圆的什么?
生:是这个圆的半径。
师:半径和什么有关系?圆的周长又和什么有关系呢?
生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。
师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。
(学生测量圆的直径)
随着学生报数,教师板书:
圆的周长圆的直径
9厘米多一些3厘米
31厘米多一些 10厘米
47厘米多一些 15厘米
教师请同学们观察、计算、讨论圆的周长和直径的关系。
(学生讨论,教师行间指导、集中发言)
生1:我发现这个小圆的周长是它的直径的3倍。
师:整3倍吗?
生1:不,3倍多一些。
生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。
生3:我发现第三个圆的周长也是它的直径的3倍多一些
(板书:3倍多一些)
师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。
滚动法验证:
绳绕法验证:
投影显示验证:
直径:
周长:
师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?
投影出示祖冲之的画像并配乐朗诵。
“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3.1415926---3.1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)
同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”
教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。
(板书:圆周率)
圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3.14。
师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?
(学生独立思考、讨论、看书)
板书公式:C =πd
C =2πr
【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】
3、反馈练习、加深理解。
请同学们把开始测量的三个圆的周长用公式准确计算出来。
(学生计算)
师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?
生:计算比测量要准确、方便、迅速。
(1)根据条件,求下面各圆的周长(单位:分米)
(学生计算,得出结果)
师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?
生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。
【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】
(2)判断正误。(出示反馈卡)
① 圆周长是它的直径的3.14倍()
② 圆周率就是圆周长除以它直径的商 ()
③ C =2π r =πd()
④ 圆周率与直径的长短无关 ()
⑤ π> 3.14()
⑥ 半圆的周长就是圆周长的一半()
一部分同学认为第⑥题是错误的。
教师举起了表示半圆的模型,(如图)
请判断失误的同学们亲自指一指半圆的周长。
在操作中,同学们恍然大悟,发现半圆的周长
比圆的周长的一半多了一条直径的长度。
(3)抢答。直接说出各题的结果。(单位:厘米)
① d =1 C =
② r =5 C =
③ C =6.28d =r =
(同学们争先恐后地报出自己算出的答案)
(4)运用新知识,解决实际问题。
教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。
同学们听了这个故事,摇摇头,表示不赞赏。
一位同学站了起来:“张伟锯古树该罚款了。”
教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”
教室里热闹起来,同学们七嘴八舌地议论着……
生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”
(同学们笑了,鼓起掌来,表示赞赏。)
(四)课堂小结:
师:这节课学习了什么?请打开书----看书。
教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”
师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。
(板书:变----不变)
师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。
画一个周长是12.56厘米的圆。怎样画?
【简评:这节课的设计体现以下几个特点:
1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。
2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。
3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。
4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。
5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】
《圆的周长》教学设计5
教材分析:
《圆的周长》是六年级数学上册第一单元的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
本节课是在学生掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,知道半径,直径的关系并且会画圆,能测量出圆的直径的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,应从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学目标:
1、知识与技能目标:使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、过程与方法目标:通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法。
3、情感、态度与价值观目标:通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教学重点:推导圆的周长的计算公式。
教学难点:理解圆周率的意义。
教学过程:
一、创设情境 导入新课
在动物王国里,两只小蚂蚁正在进行赛跑,甲乙连只蚂蚁分别沿着正方形和圆形跑一圈,谁跑的路程长?为什么?
圆的知识系列微课(四)《圆的周长》教学设计
甲蚂蚁跑的路程:4×2=8(厘米)
要求乙蚂蚁跑的路程,就要求出圆的周长。
从图上可以看出:圆的周长就是圆一周曲线的长度。这节课我们就来研究圆的周长。
二、实践操作 探究新知
1、测量圆的周长
怎样测量圆的周长呢?
方法一 绳测法:用绳子绕圆一周,测出绳子的长度。
方法二 滚测法:把圆在直尺上滚动一周,做上记号,量出圆的周长。
利用课件展示两种测量方法。
小结;无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。
2、探究周长与直径的`关系:
(1)猜想:圆的周长与什么有关呢?
(2)测量圆的周长与直径,并填表
周长
直径
周长与直径的比值(保留两位小数)
1号圆片
2号圆片
3号圆片
(3)观察表格:你发现了什么?
圆的周长总是直径的三倍多一些。
(4)介绍圆周率:圆的周长与直径的比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(5)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】
3、推倒圆的周长计算公式:
刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
用字母表示圆的周长为; C=π或 C=2πr
三、实际应用 解决问题
乙蚂蚁爬过的路程为:3.14 ×2=6.28(cm)
8cm﹥6.28
甲蚂蚁爬过的路程长。
四、回顾全课 归纳总结
这节课你有什么收获?
五、板书设计:
圆的周长
化曲为直
圆的周长=直径×圆周率 π≈3.14
C=πd或C=2πr
《圆的周长》教学设计6
教材版本:《义务教育课程标准实验教科书 数学》
教学内容:六年级上册第四单元第57页
教材分析:圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。
学情分析:学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。
教学目标:
1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学要点分析:
教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。
教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。
教学过程:
一、开门见山,揭示课题
师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)
生:圆形。
师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)
(评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)
二、探索交流,解决问题
1、圆的周长含义
师:请大家想一想,什么是圆的周长?谁能指着圆说一说。
生:圆一周的长就是圆的周长。
师:(指圆)我们把围成圆的曲线的长叫做圆的周长。
2、自主探究求圆的周长的方法
师:怎样求圆的周长呢?下面我们借助学具圆片来研究。
大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。
(小组活动,教师巡视。)
师:哪个小组先来介绍你们的方法?
生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。
师:还有那个小组也用到了这个方法?
(全体学生都举手)
师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?
生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。
师:这个办法怎么样?
生:很好。
师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:
多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。
还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。
师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?
生:直线。
师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)
(评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)
师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?
生:不能。
师:为什么呢?
生1:我们没有那么长的绳子,更不可能用滚动的方法。
生2:就算我们有足够长的绳子,可是量起来太困难。
师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?
生:计算。
(评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)
3.探究圆的周长计算公式
(1)探究发现圆周率的取值范围
师:怎样计算圆的周长呢?
师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?
生:直径和半径。
师:能说说你的理由吗?
生:因为圆的直径和半径决定圆的大小。
师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?
(大多数学生茫然,教师加以引导)
师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?
生:倍数关系。
师:请大家观察,你认为圆的周长是直径的几倍?
生:圆的周长是直径的2倍多。
师:能说说你是怎样想的?
师指图继续让生说。
生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。
师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?
(评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的联系,促成了迁移。)
生猜并说理由。
师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?
(老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)
师:我发现每个小组都有自己的想法了,哪个小组先来说一说?
生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。
生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。
师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?
生:想。
师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?
生:六份
师:圆周角平均分成了6份,那这一个角是多少度呢?
生:60度。
师:这一个三角形是什么三角形?(课件闪烁一个三角形)
生:等边三角形。
师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)
生:弧长。
师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?
,《圆的周长》教学实录与评析
生:6倍多。
师:比圆直径的几倍多?
生:3倍多。
师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?
生:我们可以量出圆的周长和直径,用周长除以直径,算一算。
(评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题—形成假设—猜想推理—形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)
(2)计算圆周率的近似值
师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。
(小组活动,教师巡视。)
(各小组完成后,老师把各组的表格依次放在展台上。)
师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?
生:都比3大。
生:圆的周长除以直径的商都是3点几。
生:都在3.2左右。(板书:3.2倍左右)
师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。
师:一起读。(板书pài)
师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?
生:测量不准确,有误差。
师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。
(3)介绍圆周率的历史
师:有关圆周率的历史,你想了解一下吗?
(多媒体演示,教师介绍。)
师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的3倍多。和我们刚才测量计算的结果是一样的。
魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。
继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?
生:祖冲之。
师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的`人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?
生:祖冲之很伟大。
师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。
师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。
师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。
(评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)
(4)推导圆周长的计算公式
师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书:C=πd)
师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?
(板书:C=2πr)
师:要计算圆的周长,只要知道什么就可以了?
生:直径或半径。
师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)
(评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)
三、实践应用,内化提高
师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?
(学生独立尝试,教师巡视。)
师:谁来介绍你的计算方法?
生读题,集体订正。
(评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)
四、回顾整理,反思提升
师:今天这节课你有什么收获?
生1:我学会了计算圆的周长。
生2:我了解了圆周率的历史。
师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。
(评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)
创新特色:
1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。
数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。
2、促进知识的迁移
“为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。
3、把数学教学看作一个整体。
本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。
3、充实、完善了教学目标。
把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。
《圆的周长》教学设计7
教学内容:义务教育课程标准实验教科书六年级上册第62——64页。
教材分析:
这部分内容是在学习了周长的一般概念以及学习长方形、正方形、三角形的周长的计算的基础上进一步学习的内容。本课以探索圆的周长与它直径的倍数关系为重点,从而引出圆周率的概念,并总结出圆的周长计算公式。学生掌握了圆的周长的计算,可以解决生活中许多实际应用求圆的周长的问题,还为以后学习求圆柱的侧面积打好基础。
学情分析:
六年级学生已经有了一定的动手操作能力,也喜欢自己动手实践,教学时我充分认识到这一点。学生已经有了圆的周长的一般性概念,只是研究圆的周长与直径的关系。所以,教学的关键是引导学生通过动手操作发现圆的周长与直径之间的倍数关系。
教学目标:
1、知识与技能目标:使学生直观认识圆的周长,掌握圆的周长计算公式,能正确计算圆的周长。
2、过程与方法目标:通过对圆周率的值的探索,培养学生的观察、比较、分析、概括及动手能力,发展学生的空间观念。
3、情感态度与价值观目标:通过介绍祖冲之在圆周率方面所做的贡献,渗透爱国主义思想。
教学重难点:
重点:理解并掌握圆的周长计算方法。
难点:理解圆的周长公式的推导。
师生齐准备:
教师:4个直径分别是4厘米、6厘米、8厘米、10厘米的硬纸圆片。
学生:自作硬纸圆片、直尺、小剪刀、细绳、计算器。
设计思路:
《数学新课程标准》指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。”根据课标的要求,本课让学生积极思考、自主探索测量圆周长的方法,并在小组合作下动手实践,成功地测量出圆的周长。又让学生带着明确的目的通过计算、观察、分析发现规律,理解圆周率的意义。从而推导出圆的周长的计算方法,最后利用规律解决问题。这样的设计,能有效地启发学生的.思考,使学生成为学习的主体,逐步学会学习。
教学过程:
一、课前准备,激发兴趣
1、亲自体验
大家都知道我们校园大道两旁的草坪上有两个花坛,左边一个是正方形、右边一个是圆形。请同学们分别沿着边沿走一圈,看看哪边的路长。
2、全班交流
要想知道哪边的路长,只要比较什么就可以了?怎样比较?全班交流一下,下节课把这些问题带到课堂上来。
【设计意图:让课堂回归学生的生活空间,回归学生的身边,大大激发了学生的学习兴趣,从而对学习充满了信心。】
二、解决悬念,导入新课
1、解决悬念
师:同学们,要想知道哪边的路长,只要比较什么就可以了?怎样比较?
通过课前的交流得出:要想知道哪边的路长,只要比较正方形和圆的周长就可以了。
2、导入新课
同学们,你有办法计算正方形的周长吗?(生回答)圆的周长又该怎样计算呢?这节课我们就一起来研究圆的周长。(板书:圆的周长)
【设计意图:解决课前悬念,又让学生带着新的悬念进入学习,再次点燃了学生思维的火花。】
三、探索新知
1、认识圆的周长
师:我们已经学过正方形、长方形的周长,(师拿着这两种图形边演示边说)那么你们知道圆的周长在哪里吗?现在拿出课前准备的圆片,同桌互说并且用手演示给你的同桌看看。
(1)演示时应注意什么?(起点和终点)
(2)指名学生上台演示。
(3)学生试着用自己的话说一说什么是圆的周长,并充分交流。
(4)师生共同概括总结:围成圆的曲线的长度就是圆的周长。
【设计意图:让学生动手操作并充分交流得来的结果,学生对知识的得来更深刻。】
2、谈话激趣
师:我们要想知道圆形花坛的周长和手中圆片的周长,应该怎么做?(生:量)
师:如果这个圆很大很大怎么办?像我们的学校、甚至我们整个村委会、整个地球这么大,我们小学生还能量吗?(生:计算)
师:怎么计算呢?古今中外的数学家在千百次的实验中发现圆的周长与它的直径有着密切的关系,我们是不是也来做个实验,看看圆的周长与直径究竟有什么关系?
3、学生自主寻找测量圆的周长
师:把准备好的4个不同直径的圆片发给每个小组,并把下表格贴在黑板上
研究对象
直径
(厘米)
周长
(厘米)
周长与直径的比值
得数保留两位小数
(1)提问:圆的周长用直尺测量方便吗?用什么方法可以化曲为直,量出圆的周长呢?
(2)小组合作,寻找测量圆的周长的方法
教师巡视,也可以参与到学生的小组学习中去。
(3)组织交流
学生可能会出现以下两种方法:绕绳法和滚动法。
(4)寻找不同方法的学生分别上台演示,并说说测量方法的过程。
(5)不同小组汇报测量结果,教师把结果填入相应的表格里。
【设计意图:让学生通过小组合作,全体交流探索测量一般圆形周长的方法,目的是让学生通过动手操作,养成积极开动脑筋思考问题的良好学习习惯。】
4、探究圆周长与直径的关系
(1)学生计算
师:现在请同学们用计算器计算圆的周长与该圆直径的倍数关系,教师根据学生计算结果填入相应的表格里。
(2)引导学生观察发现
通过我们的实验和计算,再观察黑板的表格,请分析数据,你发现了什么?
(3)先在小组里交流,再全班交流。
(4)交流发现:圆的直径越长,圆的周长就越长;圆的周长总是它直径的3倍多一些。
【设计意图:在学生较好的获取了圆的周长的意义后,又让学生带着明确的目地和极高的兴趣在实验结果中观察、分析圆周长与它直径的关系,达到了感知和理解的目的。】
5、介绍圆周率
师指出:经过实验证明,圆周长确实是直径的3倍多一些,我们把它叫做圆周率,用字母∏表示,圆周率是一个固定的数,它是一个无限不循环小数,∏=3.1415926535…但在实际应用中一般是取它的近似值3.14。其实很早以前我国的数学家祖冲之就发现了这个规律,下面就请大家翻开课本第63页学习“你知道吗?”通过学习老师也希望大家像数学家祖冲之一样,在学习上有不断的探索精神,将来我们也能成为数学家。
【设计意图:通过介绍圆周率的来历,让学生为我国古老而悠久的文化与祖先的聪明才智所折服,激发学生的爱国热情及学习的积极性。】
6、推导圆周长的公式
师:根据圆周率的含义,你想说什么?
(1)引导学生说出:圆的周长是直径的∏倍。
(2)引导学生归纳:圆的周长=直径×∏。
如果用c表示圆的周长,d表示直径,字母公式你会表示吗?板书c=∏d。
如果知道半径r呢?板书c=2∏r。
师:同学们通过自己的努力得出了圆的周长的公式,要求圆的周长,需要知道什么条件呢?(直径或半径)
齐读公式
【设计意图:知识到这里已是水到渠成,放手让学生自己总结,充分相信学生,增强学生学习信心。
四、教学例题
(1)出示例1,学生读题,并说说了解到的信息和问题。
(2)学生独立解决问题。
(3)个别学生上黑板板演,并说说自己的想法。
(4)组织全体学生交流。
【设计意图:刚刚总结出来的公式,放手让学生试着用,从而增强学生学习的成功感。】
五、巩固运用
1、填表
半径r(m)
直径d(m)
周长c(m)
2、老师已经量过我们草坪上圆形花坛的半径是4米,请同学们算一算,沿着它的边沿走一圈是多少米?
课后回去再想办法求出正方形的花坛的周长,再比较一下圆形花坛的周长大,还是正方形花坛的周长大。
3、一个圆形喷水池的半径是5m,它的周长是多少米?
4、一个呼啦圈的直径是0.95米,它的周长约是多少米?(得数保留一位小数)
5、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?经过45分钟呢?
【设计意图:练习的设计既注意公式的简单应用,又注重使学生能熟练应用公式解决不同情况的实际问题。体现数学在生活的价值。】
六、课堂小结
今天我们一起研究了圆的周长。请你告诉大家你学会了关于圆的周长的哪些知识?
【设计意图:让学生对本课知识进行回顾和总结,加深记忆和理解。】
七、板书设计
圆的周长
围成圆的曲线的长度就是圆的周长
绕绳法和滚动法
圆的周长=直径×∏
c=∏d或c=2∏r
【设计意图:使学生对本课知识更明了、清楚,一目了然。】
自我评析:
1、让学生在生活中学习数学
《数学课程标准》明确要求“使学生感受数学与现实生活的密切联系。”这是小学数学教学的基本任务。本节课选取实际生活周边的场景,让学生课前亲身体验,充分交流等学习方法进入新课学习,真真正正地把数学融入生活。
2、在亲自实验中实现新知识的生成
在学习探究圆周率这个环节中,我充分让学生在小组合作,动手操作以及观察、分析、归纳和概括为一体的活动中学习,一是为学生提供了自主探索学习的时间与空间,二是引导学生的多种感官参与学习过程,从而提高学生学习的主动性和积极性,突破了难点,水到渠成地实现新知识的生成。
3、精心设计练习,提高应用意识
把所学知识应用于生活实际,不但可以使学生感到知识是有用的,而且有利于提高学生灵活应用知识的本领。本节课的练习设计既注意公式的简单运用,又注重应用公式解决不同情况的实际问题。体现了“学数学,用数学”的教学观念。
总之本节课的设计从学生的实际出发,通过测量圆的周长、探索圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生是在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更重要的是态度、思想、方法,是一种探究的品质。
《圆的周长》教学设计8
一、教学内容:
圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
三、教学重点:
1.理解圆周率的意义。
2.推导出圆的周长的计算公式并能够正确计算。
四、教学难点:
理解圆周率的意义。
五、教学过程:
(一)创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长。
3、师:今天我们就来研究圆的周长。并出示课题。
(二)引导探究,学习新知
1.推导圆的周长公式
(1)学生讨论
a.正方形的周长跟什么有关系?有什么关系?
b.你认为圆的周长和什么有关系?
(2)猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?
(3)动手操作
a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
b.汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?
2.认识圆周率、介绍祖冲之
(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14
(2)介绍祖冲之
3.归纳圆的周长公式
(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:C=πd
(2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr
师问:圆的周长分别是直径与半径的几倍?
(三)巩固应用,强化新知
1.求下面各圆的周长。
1)d=2米2)d=1.5厘米
2.求下面各圆的周长。
1)r=6分米2)r=1.5厘米
3.判断题
(1)π=3.14 ( )
(2)计算圆的周长必须知道圆的直径( )
(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )
4.选择题
(1)较大的圆的圆周率( )较小的圆的圆周率。
a大于b小于c等于
(2)半圆的周长( )圆周长。
a大于b小于c等于
5.课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
6.实践操作
请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。
(四)课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
反思:
“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的'认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。
1.动手实践,探究圆周长的测量方法。
怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。
当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。
学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。
2.探究圆周长与直径的关系,寻找圆周长的计算方法。
在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。
学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。
在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。
《圆的周长》教学设计9
一、教学目标
1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2. 培养学生的观察、比较、分析、综合及动手操作能力;
3. 结合圆周率的学习,对学生进行爱国主义教育。
二、教学准备
一元硬币、圆形纸片等实物以及直尺,测量结果记录表
三、教学过程:
<一>、创设情境,引起猜想:
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2. 怎样才能知道这个正方形的周长?说说你是怎么想的?
3. 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法: 刚才我们已经解决了正方形周长的`问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)
化曲为直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
<二>、实际动手,发现规律:
(一)分组合作测算
1.明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系
2.生利用学具动手操作,师巡视指导、收集信息。
3.集体反馈数据(选取3~4组实验结果,黑板板书展示)
(二)发现规律,初步认识圆周率
1.看了几组同学的测算结果,你有什么发现?
2.虽然倍数不大一样,但周长大多是直径的几倍?
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3.这个倍数究竟是多少呢?我们来看一段资料。
(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5.解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1. 如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长 = 直径× 圆周率
C =πd
2. 如果知道圆的半径,又该怎样计算圆的周长呢
板书:C =2πr
追问:那也就是说,圆的周长总是半径的多少倍
<三>、巩固练习,形成能力
1.判断并说明理由:π = 3.14 ( )
2.选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确是:()
a.大圆的圆周率大于小圆的圆周率;
b.大圆的圆周率小于小圆的圆周率;
c.大圆的圆周率等于小圆的圆周率。
3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
<四>、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
《圆的周长》教学设计10
教学内容:小学数学实验教材十一册第107~108页“圆的周长”
教学目标:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2、培养学生的观察、比较、分析、综合及动手操作能力;
3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,
以及直尺、绸带,测量结果记录表,计算器,投影资料等
教学过程:
一、创设情境,引起猜想:
(一)激发兴趣
播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1、回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2、认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
[评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿
(三)讨论正方形周长与其边长的关系
1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2、怎样才能知道这个正方形的周长?说说你是怎么想的?
3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
[评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。
(四)讨论圆周长的测量方法
1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法:(板书)转化
曲直
4、创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5、明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
[评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。
(五)合理猜想,强化主体:
1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩
2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4、小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
[评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。
二、实际动手,发现规律:
(一)分组合作测算
1、明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的`建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。
(二)发现规律,初步认识圆周率
1、看了几组同学的测算结果,你有什么发现?
2、虽然倍数不大一样,但周长大多是直径的几倍?
3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3、这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4、理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5、解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1、如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长=直径×圆周率
C=πd
2、如果知道圆的半径,又该怎样计算圆的周长呢
板书:C=2πr
追问:那也就是说,圆的周长总是半径的多少倍
[评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。
三、引导质疑,深入领会(略)
四、巩固练习,形成能力
1、判断并说明理由:π=3。14()
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
五、课内小结,扎实掌握
通过今天的学习,你有什么收获?
[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。
六、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
[总评]
纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。
《圆的周长》教学设计11
教学内容:
国标苏教版小学《数学》三年级(上)61、62页。
预设目标:
1.通过学生的操作、实践,感悟周长的含义,了解物体表面或平面图形一周边线的长就是它们的周长。
2.通过围、量、算等操作活动,引导学生自主探索测量、计算周长的多种方法。
3.体会数学与生活的密切联系,发展数学思考能力,享受学习的快乐。
预设过程:
【导入】
创设情境:1.介绍园区欣赏金鸡湖景色沿边线走一圈。板书:边线
2.来到二实小,指出足球场的边线。
3.宿舍门牌的边线。
【周长】
1.老师指数学书封面的边线,老师示范,学生跟着老师摸一圈
2.请同学摸一下其他物体的边线。(数学书,文具盒,黑板等)
3.完成书62页/2上描出每个图形
【课题】
这节课我们一起来认识周长,研究周长。板书:周长
【活动一】
1.出示:树叶硬币名片用直尺能直接测量哪个物体的周长?
2.学生测量名片的周长。
3.p61试一试
4.P62页想想做做4
【活动二】
测量树叶、硬币的周长
【应用】
1.讨论:如何测量金鸡湖、足球场、门牌的周长。
2.数学小知识:测量地球的周长。
3.周长在生活中的应用。
认识周长
执教:苏州工业园区第二实验小学单国红
一、课前谈话,创设情境。
师:你知道单老师来自哪里?
生:苏州。
师:苏州的工业园区,现在单老师带着大家到那里游玩一下。(欣赏苏州工业园区景色)
师:苏州的金鸡湖是苏州有名的湖泊,比杭州的西湖还要大,这里的景色非常优美。
看(出示金鸡湖景点地图,有水巷邻里、城市广场、湖滨达大道、金鸡湖大桥、现代广场、国际博览中心、望湖角、金鸡墩。)
师:你想到哪里去游玩?
生说景点名称,师点击介绍景点情况。
二、认识周长。
师:金鸡湖的景点很多,你怎么走可以一个不拉?
生:可以绕着它的边走。
师:(电脑勾勒金鸡湖的边)这就是金鸡湖的边线。我们学校在金鸡湖的东边,一起去看一看。(出示操场画面)这是我们学校的的操场。你能指出足球场的边线吗?
(生指出足球场的边线。)
师:足球场里面还有很多线,也是它的边线吗?
生:不是。因为这些线在周长的里面。
师:再一起到宿舍去参观。这是命名为玲珑湾的房间,它的边线在哪里?
(生指出房间门牌的边线。)
师:刚才我们到操场、宿舍找到了一些物体的边线,其实物体表面都有它的边线。拿出你的数学书,你能指出它的边线吗?
(学生指数学书的周长)
师:三角尺有边线吗?
(学生指三角尺的周长)
师:生活中其他的物体你也能找出它的边线吗?
(学生指铅笔盒、桌子、黑板、横幅、窗户、贴花纸、电灯的边线。)
师:看来物体的表面都有边线。我们把它们画下来看,这些图形有边线吗?你能描出它们的边线吗?
请你选两个自己最喜欢的图形,描出它们的边线。
(学生在作业纸上描。)
师:谁愿意把你描的边线上来展示一下?
(学生展示所描物体的边线。)
师:物体表面它一周的边线的长就是它的周长。那么这个长方形的周长就是指几条边的长度?
生:长方形的周长就是指它四条边的总长。
师:那么这个半圆形的周长是什么呢?
生:半圆形的周长是一条横线和一条曲线。
师:梯形的周长呢?
生:四条直直的线。
师:这个房子的周长呢?(生答略)
师:这个脚印的周长呢?(生答略)
三、测量周长。
师:(边说边出示)老师带来了一张名片、采来的树叶、一个硬币,它们的周长分别是什么?(生分别指出三个物体的周长)
师:你认为它们的周长哪个最长呢?
生:名片的周长长一些,硬币的周长最短。
师:文具盒中有测量周长的工具吗?拿出来看看,你认为用这些工具最容易测量的是哪一个周长?
生:名片的周长最容易测量。
(学生四人小组,量出老师名片的周长。)
生1:我们一组先量长度是9厘米,宽度是5厘米,9加5等于14,有两条长和两条宽,就是28厘米。
师:(边指边说)他们通过直尺量出了这条边是9厘米,这条边是5厘米,然后再算出周长。
生2:我们一组计算方法不同,先量长两个9厘米,宽两个5厘米,就是28厘米。
师:他们也是只测量了两条边的长度,然后根据长方形的特征算出长方形的周长。有测量4条边的吗?
师:请你测量出三角形和一个四边形的周长。
(学生独立测出书上三角形、四边形的周长是多少。)
师:三角形的周长是怎么得到的?
生1:三角形的周长是13厘米,先算出长的边,标上去,是5厘米,这条边4厘米,这条边3厘米,合起来算出是13厘米。
生2:他算错了,5加4加3是12。
师:四边形的周长呢?
生1:最长的边是3厘米,最短是1厘米,上面也是3厘米是7厘米。
生众:错了!
生2:它有4条边,3加3加2加1是9厘米。
师:哦,少算了一条边,周长应该是围成它一周的四条边的长度。
师:下面老师给你一些图形各条边的长度,请你用合理的方法算出来它们的周长。
(出示一些标注各边长度的图形
○1三角形:5厘米、5厘米、6厘米。
生1:5加5加6。
生2:5乘2加6
生3:把6比作5,3个5是15,加上剩下的1是16。
○2三角形:3厘米、3厘米、3厘米。
生1:周长9厘米,3乘3是9厘米。
生2:3加3加3是9厘米。
生3:2乘3加3是9厘米。
○3平行四边形:3厘米、3厘米、4厘米、4厘米。
生1:4加4等于8,二三得六,合起来是14厘米。
生2:两个3加4等于14(厘米)。
生3:3加3加4加4。
生4:三四十二,加退掉的2是14。)
师:刚才我们通过测和算的方法得到了一些物体的周长(板书:测和算)。那么这两个物体你为什么不能用直尺测量周长呢?
生1:硬币是圆的,直尺不是圆的。
生2:可以量直径。
师(惊讶状):都知道直径了!
生3:量时做记号,就可以了
师:看来有的同学想出来了,要把这些弯弯曲曲的线变成直的线,然后再测量就可以得到它们的周长了。
师:可以用他们的方法,也可以用自己的好办法,从中挑选一个(硬币和树叶)小组合作测量出它的周长。
(小组活动)
师:哪些同学是测量的硬币的周长的?介绍一下?
生1:因为硬币很薄,我们把它摁在桌上,一个同学用线围它的边,再拉开是7厘米5毫米。
生2:我们也是量硬币,用另一种方法,把线围一圈再用剪刀剪断。
师:有没有同学量的是树叶的周长?
生1:把树叶对折,是两个这条边的长,量出一个就可以了。
生2:用线绕树叶,是16厘米5毫米。
师:除了用围的方法(板书:围)可以帮助测量硬币的周长,还有别的方法吗?
生:(疑惑状)
师:其实还可以用滚的方法(板书:滚。)。(教师教滚的方法:在硬币上作好记号,滚到那里停下来。学生用滚的方法试一试。)
四、周长测量的实际运用。
师:通过滚动的方法、围的方法,可以得到这些物体的周长。那么刚才我们认识了足球场的周长、门牌的周长、金鸡湖的周长。你认为用怎样合理的方法可以测量它们的周长呢?
生:门牌号用线绕一下线,再量。
生:足球场用尺量。
师:要用很长的尺量,用怎样的尺呢?
生:卷尺!
师:金鸡湖更大,它的周长怎么测量呢?相互讨论讨论,看哪一组的方法好。
生1:我们用卷尺量,作记号。
生2:金鸡湖弯的.,我们可以量。
生3:我们走一步是1米,只要看走几步,就知道了。
师:这是一个好办法,数学上叫步测。
生4:我用真实的方法来测量。不是数学方法。我只要问一下那里的人。
生5:我只要去看一下路牌,上面会有多少米。
师:要测量比较大的物体的周长看来比较困难。但是在两千多年前就有一位数学家测量了地球的周长。你想知道他是谁吗?
师:公元前3世纪,古希腊就有一数学家叫埃拉托斯芬(结合电脑演示介绍)。
师:生活中很多时候都要测量物体的周长。比如说,花坛的周长、手绢的周长、跑道的长师:还有爸爸妈妈带我们到商场去买衣服、裤子,要测量
生1:胸围。
生2:还有腰围。
师:谁来演示一下?(生上台操作演示)哦,这样就得到了他的腰围。
师:这两天我们最关心的就是神舟六号。(出示神六轨道图片)它飞行的轨道一周长是
神舟六号发射成功标志着我国航空事业有了新的突破。我们要把基础打好,长大做一个对社会有用的人。下课!
说课反思
苏州工业园区第二实验小学单国红
说教材:
内容是国标苏教版小学《数学》三年级(上)61、62页。
周长是《数学课程标准》中空间与图形这一知识领域的重要教学内容之一,在生活中的应用也十分广泛。对于周长的教学应在学生探索了长方形和正方形特征的基础上,密切联系生活中常见的物体和图形,通过观察与积累,充分感知什么是周长,从而建立周长的概念。同时结合学生已有的知识经验,利用围、量、算等活动引导学生主动探究,彼此交流,测量、计算一个图形周长的方法,并鼓励学生运用周长的知识解决生活中常见的问题,在活动中巩固对周长的认识,发展数学思考,并为下面的长方形、正方形周长的研究进行准备。
说目标:
1.通过学生的操作、实践,感悟周长的含义,了解物体表面或平面图形一周边线的长就是它们的周长。
2.通过围、量、算等操作活动,引导学生自主探索测量、计算周长的多种方法。
3.体会数学与生活的密切联系,发展数学思考能力,享受学习的快乐。
说教法:
一、通过生活数学生活的教学结构,从而体现数学的生活性,实现人人学习有价值的数学的数学理念。
数学生活化,让学生学习现实的数学是数学新课程理念之一,所以,整个教学过程以游览金鸡湖为主线,使学生仿佛身临其境,在亲切的生活背景中自然地感悟周长的含义、探究周长的求法。课的一开始,游览金鸡湖切入口,认识物体表面的边线,从而引出周长。接着,通过指现实中有关周长的事例,让学生充分感知周长的含义,与此同时体会周长与生活的密切联系,产生学习需求。数学只有回到生活中,才会显示其价值和魅力,学生回到生活中运用数学,才能真实地显现其数学水平,因此,课的结尾,回到生活中去,使学生切实感受到数学来源于生活,应用于生活。
二、整个教学过程充分发挥学生的动手实践能力,通过摸一摸、描一描、量一量、算一算、围一围、滚一滚等活动,使学生体验做数学的过程。
新课标指出:数学教学是数学活动的教学。因此,本课安排了感知和操作两个层面的活动。第一层面是感知层面的活动,这里分为两次层次,先通过教师范例和学生自己举例让学生充分感知,为过渡到抽象的符号性奠定坚实的感性基础。接着,通过迁移类推让学生自己描出平面图形的边线感知平面图形的周长,这样,帮助学生从实物到平面图形建立完整的周长概念。第二层面是操作层面的活动,让学生在情境中自主探索求名片、树叶、硬币周长的方法,活动前提供一些材料,在教师地适当引导下学习数学,充分挖掘学生的创造潜能,培养学生的创新能力,然后让学生汇报各自的发现,在多种方法的交流中培养学生的创新意识。
这样,让学生在活动中发现、在生活中探究、在活动中互动、在活动中内化、在活动中应用、在活动中创造,体现学生是学习的主人,活动是学习数学的重要方式的教学理念。
三、在练习设计上,注意开放性和实用性,从而培养学生的应用意识
这个主要体现在以量、算为主要地数学方法,强调算法的多样化;其次测量周长方法上,也体现解题策略的多样化。滚、绕的方法重在得出,不求严密、规范。并要求学生进行拓展,如测量金鸡湖的周长等,同时引入古希腊科学家测地球周长的小知识,感受数学文化的价值。最后联系神舟六号的发射成功,激发学生的积极性和创造意识。
《圆的周长》教学设计12
教学内容:圆的周长
内容分析 :通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。
学生起点 :对圆和周长的概念已有初步的认识
教学目标: 1、理解圆周长的概念,理解圆周率的意义。
2、使学生掌握圆周长的计算公式及公式的推导过程。
3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。
4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。
教学重点 :圆周长公式的推导。
教学准备 :直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。
教学流程:
一、复习引入
1、学生说圆的认识;
(你对圆的知识有哪些了解)
2、揭示课题:
今天我们要一起来学习圆的周长。(板书:圆的周长)
二、新授
1.认识圆的周长;
(1)师拿出圆片让学生指出圆的周长;
(哪一部分是圆的周长)
(2)描出两个规格不同的圆的周长;感受圆的周长;
(请你描出练习纸上两个圆的周长。)
(哪一个周长长?)
(3)揭示圆周长的概念;
(用自己的`话说说什么是圆的周长)
师小结:围成圆的曲线的长叫做圆的周长;
围成圆的一周的长叫做圆的周长。(幻灯出示)
2、理解、运用圆周长的测量方法。
师问:圆的周长长短不一,该怎么测量?
生边演示测量圆片周长,边介绍绳测法。
要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。
学生汇报测量结果,师记录。
圆片测量记录单:
3.探究圆的周长与直径的关系。
(1)猜测跟圆周长相关的量;
(猜测一下,圆的周长长短跟什么量有关?)
计算记录单中周长与直径的比值,得数保留两位小数;
学生反馈比值;
周长(厘米)
直径(厘米)
周长与直径的比值(得数保留两位)
(2)认识圆周率
①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。
(板书:圆周率 π )
②幻灯片展示圆周率的由来,学生自主阅读;
总结圆周长的计算公式。
①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?
提示:从测量记录单中找取。
②如果周长用C表示,字母式是怎样的?
③周长跟半径又是怎样的关系呢?字母式呢?
(板书:圆周长=圆周率×直径 C=πd 或
圆周长=2×圆周率×半径 C=2πr
三、巩固练习
基本练习
一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。
只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:
两个小朋友同时同速从A点到B点,谁先到达?
B
A
四、总结:学习了这堂课你有哪些收获?
《圆的周长》教学设计13
教学目标:
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点:推导圆的周长的计算公式,准确计算圆的周长。
教学难点:理解圆周率的意义。
教具准备:圆片、铁圈、绳子、直尺。
教学方法:观察、演示、小组合作交流
教学过程:
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
二、经历探究全程,验证猜想发现。
一圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
二圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的`边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)
三、感受数学文化,激发情感教育。
1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
2、介绍计算机计算圆周率的情况。
3、教学圆周率:π≈3.14。
四、归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd或C=2πr
《圆的周长》教学设计14
【微课简介】
《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。
【教学背景】
数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。
【教材分析】
圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。
【学情分析】
本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。
【教学目标】
推导并总结出圆周长的计算公式。
【教学重难点】
推导出圆周长的计算公式。
【教学方法】
以引导探究为主的.探究法。
【学习环境与资源】
1、学生分组,每一组至少有一台联网的计算机。
2、探究工具软件《圆的工具》
3、学生探究活动纸
【教学过程】
这一环节主要是进行实验探究,构建模型。
一、出示实验任务,提出实验要求。
1、把用来记录探究数据的学生活动纸分发给学生。
2、介绍实验软件:圆的工具
3、出示探究活动一的任务:
二、学生应用软件开展数学实验
1、同桌合作,轮流进行操作和记录;
【软件使用说明】
2、四人小组进一步协作整理数据,发现规律;
学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。
当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”
这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。
3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。
三、建构数学模型
1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。
2、学会按顺利整理数据的实验方法。
【教学总结】
圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。
《圆的周长》教学设计15
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的`:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
【《圆的周长》教学设计】相关文章:
圆的周长教学设计11-08
数学《圆的周长》教学设计09-18
圆的周长教学反思04-02
《圆的面积》经典教学设计06-15
圆的面积教学设计04-09
《长方形周长》教学设计10-11
《千年梦圆在今朝》教学设计07-13
《长方形和正方形的周长》教学设计08-27
《千年梦圆在今朝》教学设计优秀09-11