《平行四边形的面积》的教学设计

时间:2024-11-13 13:24:35 教学设计 我要投稿
立即下载

《平行四边形的面积》的教学设计

  作为一名人民教师,总归要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。一份好的教学设计是什么样子的呢?以下是小编收集整理的《平行四边形的面积》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《平行四边形的面积》的教学设计

《平行四边形的面积》的教学设计1

  教材分析

  本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。

  学情分析

  在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。

  教学目标

  1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点 理解公式并正确计算平行四边形的面积。

  教学难点

  用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。

  教学准备每人准备一个长方形、平行四边形和一把剪刀。

  教学过程

  (一)剪剪拼拼,渗透转化。

  (每生发一个长为10厘米,宽为15厘米的长方形)

  师:同学们,这种形状的图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?

  师:今天我们要给长方形来变变样。

  师:你有办法马上算出这个图案的面积吗?

  师:为什么这么快就算出来了。

  师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?

  师小结:转化思想。

  (二)创设情境,探究新知。

  1、猜测平行四边形面积的计算方法。

  师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的哪些数据?这么多方法,到底哪种对呢?

  2、组织探究活动。

  同桌合作活动,活动前思考:

  想一想,你准备把平行四边形转化成什么图形,为什么?

  提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。

  边操作边思考:

  转化后的图形与平行四边形有什么关系?

  你认为平行四边形的面积该如何计算?

  4、交流探究结果

  师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的。

  5、推导面积公式

  师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?

  小结:回顾一下观察的全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的'面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。

  长方形的面积=长×宽

  平行四边形的面积=底×高

  师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah

  (三)练习巩固,课堂拓展

  1、求下面平行四边形的面积。

  2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)

  3、判断:哪个平行四边形的面积是2×3=6

  4、看谁算得快

  5、睁大眼睛,别看花眼啦

  6、书本练习十五第7题。

  7、书本第83页第5题。

《平行四边形的面积》的教学设计2

  教学目标:

  1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

  2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。

  重点、难点:

  教学重点:掌握平行四边形面积计算公式。

  教学难点:平行四边形面积计算公式的推导过程。

  教学准备:

  教具准备:多媒体课件,平行四边形的图形。

  学具准备:剪刀、平行四边形纸片。

  教学过程:

  一、情境导入

  1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。

  2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的`西头,可他家的地却在村子的东头。太不方便了,怎么办呢?

  通过交换土地的想法揭示课题《平行四边形的面积》

  【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。】

  二、自主学习

  1.剪一剪,拼一拼。

  师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)

  2.探讨联系

  师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?

  (1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。

  (2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  (3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。

  3.推导公式

  师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】

  三、巩固练习

  师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。

  【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】

  四、课堂小结

  这节课你有什么收获?

  【设计意图:使学生回顾、梳理本节课的学习内容。】

《平行四边形的面积》的教学设计3

  一、教材分析

  本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。

  二、教学目标

  1。综合运用平行四边形的五种判定方法和性质解决实际问题;

  2。进一步理解平行四边形的性质与判定的区别与联系;

  3。通过练习提高学生的逻辑思维能力以及分析问题的能力。

  三、教学重难点

  重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。

  难点:在应用中明晰性质与判定的区别与联系。

  四、教学方法

  通过简单,典型,针对性质和判定的应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考————组内有效交流讨论————组内归纳方法————全班展示————及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的过程。

  五、教学反思

  题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的'两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟————小组交流5分钟————小组展示————全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。

《平行四边形的面积》的教学设计4

  [教学目标]

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点、难点]

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  [教具、学具准备]

  多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

  [教学过程]

  一、复习旧知,导入新课。

  1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

  2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

  师板书:长方形的面积=长×宽

  师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

  二、动手实践,探究发现。

  1、剪拼图形,渗透转化。

  (1)小组研究

  老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

  (2)汇报结果

  第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

  板节课题:平行四边形面积计算

  2、动手实践,探究发现。

  (1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

  (2)学生重新剪拼,互相探讨。

  (3)汇报讨论结果。

  师板书:平行四边形的面积=底×高

  (4)让学生齐读:平行四边形的面积等于底乘以高。

  (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

  (必须知道平行四边形的底和高)

  课件展示讨论题:平行四边形的底和高是否相对应。

  (6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)

  (7)比较研究方法。

  三、分层训练,理解内化。

  课件显示练习题

  第一层:基本练习

  第二层:综合练习

  第三层:扩展练习

  下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  四、课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  附说课稿:

  一、 教材与与学情分析

  《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。

  小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标:

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  教学重点、难点:

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  教具、学具准备:

  多媒体课件、长方形纸、剪刀、直尺、

  二、理念设计:

  1、运用信息技术手段,优化数学课堂教学。

  2、体现“数学从生活中来,再回到生活中去”。

  3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。

  三、教法、学法

  教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。

  学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

  四、教学程序

  为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。

  (一)复习旧知,导入新课。

  新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

  (二)动手实践,探究发现。

  1、剪拼图形,渗透转化。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

  教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。

  2、动手实践,探究发现。

  在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的`状态。

  当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。

  (三)分层训练,理解内化。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:

  第一层:基本练习:

  计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

  第二层:综合练习:

  通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

  2、把平行四边形模型拉近,它们的面积发生变化了吗?

  通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  (四)课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

  本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。

  当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。

《平行四边形的面积》的教学设计5

  教学目标:

  1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

  2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点和难点:

  教学重点掌握平行四边形面积计算的公式,能正确计算平行四边形的面积。

  教学难点平行四边形面积计算公式的推导过程。

  教学重难点:面积公式的推导。

  教具、学具准备:

  1. 教学课件。

  2.剪两个底40厘米,高30厘米的平行四边形,供演示用。

  3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。

  教学过程:

  一、复习

  1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?

  2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

  教师:今天我们就来学习平行四边形面积的计算方法。

  板书课题:平行四边形的面积

  二、新课

  1.用数方格的方法求平行四边形的面积。

  (l)指导学生数方格。

  (2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

  (3)比较平行四边形和长方形。

  提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?

  启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  (4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?

  2.用实验的方法推导平行四边形面积公式。

  (1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手.)

  (2)教师示范把平行四边形转化成长方形的过程。

  刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右平行移动。

  ③移动一段后,左手改按梯形的'左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合.(教师巡视指导。)

  (3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。

  (4)引导学生总结平行四边形面积的计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)

  (5)教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  教师说明:在含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成ah,代表乘号的“.”也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah。

  (6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。

  3.应用总结出的面积公式计算平行四边形的面积。

  (1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。

  (2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。

  (3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。

  三、巩固练习

  做练习十六的第1题。

  四、小结

  这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?

  五、作业;练习十六

  第2题和第3题。

《平行四边形的面积》的教学设计6

  教学目标:

  1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

  2、能正确地应用公式计算平行四边形的面积。

  教学重点:

  探索并掌握平行四边形面积计算公式。

  教学难点:

  理解平行四边形面积计算公式的推导过程,体会转化思想。

  教学准备:

  课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。

  教学过程:

  一、激趣引入

  1、创设情景

  师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)

  师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)

  师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)

  师:回忆一下,以前我们是用什么方法得出长方形的面积的。

  2、稳固复习

  师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。

  生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。

  师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?

  生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。

  师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)

  师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)

  师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)

  二、新知探究

  1、数方格

  师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?

  生:一格代表1m2,不到一格按半个计算。

  师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)

  2、推导公式

  师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)

  生:相邻两边相乘,或者底乘高。

  师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?

  生:面积变小了,但四条边都没有发生变化。

  师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)

  师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?

  生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

  师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?

  生:长方形。

  师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。

  (1)面积还相等吗?

  (2)转化后的长方形与原来的平行四边形有什么关系?

  (3)长方形的长、宽与平行四边形的底、高有什么关系?

  (4)怎么计算平行四边形的面积?

  生:沿着一条高切下来,不到另一边就变成了长方形。

  师:试着说说上面的四个问题。

  生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

  (生边说师边演示,并进行适当的'引导)

  师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)

  师:还有其他的方法吗?

  生:演示方法。(课件演示两种方法)

  师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)

  师:平行四边形的面积大小是由()和()决定的。共同决定的。

  3、回顾总结

  回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?

  三、练习巩固

  (一)基础练习

  1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)

  3判断:

  ①平行四边形的底是7米,高是4米,面积是28米。()

  ②a=5分米,h=2米,s=100平方分米。()

  ③平行四边形的底越长,面积就越大。()

  ④平行四边形的高越长,面积就越大。()

  4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。

  a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小

  5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。

  (二)拓展提升

  1、计算下面每个平行四边形的面积。

  2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  四、总结提示

  师:回忆一下,今天这节课有什么收获?

  总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

  板书设计平行四边形的面积

  数方格

  长方形的面积=长×宽

  计算平行四边形的面积=底×高(底高对应)

  s=ah

  割补法(转化)

《平行四边形的面积》的教学设计7

  教学重点:

  平行四边形面积的推导过程.

  本课采用的教法:

  自学法、转化方法、小组合作法、实验法。

  学法:

  1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景,为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想

  三小组合作,培养学生的.合作精神.

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.

  四例题独立完成,体现学生自己解决问题的能力.

  例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

《平行四边形的面积》的教学设计8

  【教学目标】

  1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

  2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  【教学重点、难点】

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

  【教具、学具准备】

  多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

  【教学过程】

  一、创设情境,抽取方法、导入新课

  1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

  师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

  学生思考、回答:

  (1)数格子的方法。

  (2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

  动画演示割补的过程。

  师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

  既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。

  二、应用方法,动手操作,探究新知

  1、预设问题:

  师:我们来看下面的问题:

  实验小学有一个花坛,想要计算出它的面积,怎么计算呢?

  师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:

  怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1) 出示问题:

  师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ① 平行四边形可以转化成学过的哪种图形?

  ② 平行四边形的底和高分别与转化后的图形有什么关系?

  ③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

  (3) 小组探究。

  (4) 组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1) 出示问题:

  师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ① 平行四边形可以转化成学过的哪种图形?

  ② 平行四边形的底和高分别与转化后的图形有什么关系?

  ③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

  (3) 小组探究。

  (4) 组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  (其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

  (4)师生交流提炼,形成板书:

  师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

  师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

  3、教学例1:

  师:有了这个成果,我们会解决前面的问题了吗?

  出示例1:下图平行四边形花坛的面积是多少?

  学生回答,教师板书:S=ah=6×4=24(cm2)

  3、巩固小结:

  通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

  三、分层训练,巩固内化

  1、求下面的平行四边形的面积,只列式不计算:

  (第三个图形计算中提问:用12×9.6行不行?强调底与高的.对应)

  2、慧眼识对错:

  (1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )

  (2) 平行四边形的底越长,面积就越大。( )

  (3) 下面平行四边形的面积是:8×5=40(平方厘米)( )

  ,人教新课标五上《平行四边形的面积》教案2

  (4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )

  3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:

  师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)

  我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)

  学生测量、计算、展示。

  师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。

  4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?

  四、课堂小结:

  师:这节课你有什么有收获?

  师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

《平行四边形的面积》的教学设计9

  教学内容:

  人教版小学《数学》五年级上册,平行四边形的面积。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

  2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

  3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重点:探索并掌握平行四边形的面积计算公式。

  教学难点:理解平行四边形的面积计算公式的推导过程。

  教学过程:

  一、巧设情境,铺垫导入

  师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?

  (根据学生的回答,教师适时板书:长方形的面积=长×宽)

  师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)

  师:这样一拉,形状变了,面积变了吗?

  师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?

  (平行四边形的面积等于相邻两条边的乘积)

  师:究竟这个猜想是否正确,下面我们一起来验证一下就知道了。

  请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.

  师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)

  二、合作探索,迁移创造

  1、图形转换

  师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)

  师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)

  2、探讨联系

  师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)

  师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  3、推导公式

  师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)

  (教师根据学生回答板书:平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  (教师根据学生回答板书:S=ah)

  4、验证公式

  师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)

  师:计算出来的结果和我们数方格得出的结果一样吗?(一样)

  师:这证明我们所推导出来的平行四边形面积公式是正确的。

  5、提问质疑

  师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)

  三、层层递进,拓展深化

  1、算一算

  师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  2、选一选

  师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  3、画一画

  师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)

  4、想一想

  师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的`面积计算方法来思考问题。)

  师:你发现了什么规律?(引导学生理解等底等高的平行四边形

  面积相等。)

  四、总结全课,提高认识

  回顾刚才我们的学习过程,你有什么收获?

  教学反思:

  本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。

  1、前后呼应,浑然一体

  利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。

  把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。

  2、合作探索,迁移创造

  在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。

《平行四边形的面积》的教学设计10

  教学目标

  1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学

  重难点

  教学重点:理解并掌握平行四边形的面积公式

  教学难点:理解平行四边形面积公式的推导过程

  课前准备

  多媒体课件

  教学过程

  师生活动

  思考与调整

  一、复习导入:

  1、说出学过的平面图形。

  2、在这些图形中,哪些图形的面积你会求?

  二、探究新知:

  1、教学例1:

  (1)出示例1中的第1组图

  要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

  (2)出示例1中的第2组图

  要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)

  (3)揭示课题:

  师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)

  2、教学例2:

  (1)出示一个平行四边形

  师:你能想办法把这个平行四边形转化成学过的图形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况

  第一种:①沿着平行四边形的高剪下左边的直角三角形。

  ②把这个三角形向右平移。

  ③到斜边重合。

  第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。

  ②把左侧的梯形向右平移。

  ③道斜边重合。

  (4)教室用课件进行演示并小结。

  师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。

  师生活动

  思考与调整

  (5)小组讨论:

  ①转化后长方形的面积与原平行四边形面积相等吗?

  ②长方形的长与平行四边形的底有什么关系?

  ③长方形的宽与平行四边形的高有什么关系?

  (6)学生总结,形成下面的板书:

  长方形的面积=长X宽

  平行四边形的.面积=底X高

  3、教学例3:

  (1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。

  转化后的长方形

  平行四边形

  长(cm)

  宽(cm)

  面积(cm)

  底(cm)

  高(cm)

  面积(cm)

  (2)学生操作,反馈交流。

  (3)用字母表示面公式:S=ah(板书)

  三、巩固练习:

  1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

  2、指导完成练一练:强调底和高的对应关系。

  四、总结:

  师:通过今天的学习有哪些收获?

  板书设计:平行四边形面积的计算

  转化

  已学过的图形新图形

  割补、剪拼

  因为长方形的面积=长×宽

  所以平行四边形的面积=底×高

《平行四边形的面积》的教学设计11

  教学内容:

  《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

  教学目标

  1.知识与技能

  1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2)使学生理解转化的思想,初步学会运用转化法来解决问题。

  3)培养学生的合作意识和自主探究解决问题的能力。

  2.过程与方法

  让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

  3.情感态度与价值观

  通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

  教学重点、难点

  教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  教学准备:

  多媒体课件、平行四边形学具等。

  教学过程:

  一、设置悬念激发兴趣

  师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

  [学情预设:摇头或不知道。]

  (出示:中国版图)

  师:请大家仔细观察,山西省近似我们学过的什么平面图形?

  [学情预设:学生根据观察可能会说:四边形或平行四边形。]

  师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

  [学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

  师:对,这节课我们就一起来研究“平行四边形的面积”。

  (引出课题并板书:平行四边形的面积)

  [设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

  二、动手操作引发欲望

  1、回忆平行四边形的底和高。

  师:同学们,平行四边形有哪些特征,你们还记得吗?

  [学情预设:

  生1:平行四边形对边平行、对角相等。

  生2:还有底和高。]

  师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

  [学情预设:学生根据不同的高,找到所对应的底。]

  师:由此,你发现了什么?

  生:底要和高相对应。

  师:对,这一点值得注意。

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

  2、第一次探究

  师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

  (小组活动,教师巡视)

  [学情预设:

  生1:直接数。

  生2:间接数。

  生3:沿边上的高剪开。

  生4:沿中间的高剪开。

  生5:沿两边的高剪开。……]

  师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

  (小组汇报)

  [学情预设:

  组1:用直接数方格的方法。]

  [问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

  师:哪个小组和他们的方法不一样?

  [学情预设:

  组2:间接数。

  组3:沿边上的高剪开。

  组4:沿中间的高剪开。

  组5:沿两边的高剪开。……]

  师:由此,你又发现了什么?

  小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

  [设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

  3、第二次探究

  师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

  师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

  生:不能。

  师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

  生:有。

  [学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

  (板书:长方形的面积=长×宽

  平行四边形的面积=底×高)

  师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

  [学情预设:学生汇报自学成果,教师板书字母公式。]

  师:用字母表示平行四边形的面积公式:S=ah

  小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

  即:平行四边形的面积=底×高

  [设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的.良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

  三、联系实际解决问题。

  师:解决课前遗留问题:山西省的面积大约有多大?

  [设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

  四、课后延伸渗透转化

  师:吉林省近似学过的什么平面图形?

  生:三角形

  师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

  [设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

  五、板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

《平行四边形的面积》的教学设计12

  教学内容:人教版五年级上册第六单元第一课时P87-88

  教学目标 :

  1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。

  3.感受数学在生活中的作用,体验学习数学的乐趣。

  教学重点和难点

  教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。

  教学难点:使学生理解平行四边形面积计算公式的推导过程。

  教具学具:课件、一个平行四边形、剪刀

  教学过程

  一、创设情境,生成问题

  1.故事导入

  2.从平行四边形的地中引出课题“平行四边形的面积”。

  二、探索交流,解决问题

  1.用数方格的方法计算面积。

  (1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)

  (2)学生完成,汇报结果。

  (3)观察表格的数据,你发现了什么?

  通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。

  2.推导平行四边形面积计算公式。

  (1)提问:如果不数方格,能不能计算平行四边形的面积呢?

  (2)引导解决方法:把平行四边形转化成长方形

  (3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平

  行四边形和剪刀进行剪拼,教师巡视指导。

  (4)学生汇报演示剪拼的过程及结果。

  (5)教师用课件演示剪—平移—拼的过程。

  (6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  (7)出示讨论题,小组讨论。

  (8)小组汇报交流,教师归纳:

  把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的`宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?

  S=ah

  三、巩固应用,分层提高

  1.教学例1

  例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

  (1)读题并理解题意。

  (2)学生试做,交流做法和结果。

  S=ah=6×4=24(m2),

  答:它的面积是24平方米。

  2.练一练

  (1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?

  (2)判断题

  (3)选择题

  (4)求平行四边形的面积

  (5)扩展题

  四、回顾整理,反思提升

  1.通过这节课的学习,你有哪些收获?

  2.用本课所学的知识证明老财主没有偏心。

  五、板书

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》的教学设计13

  设计理念:

  利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

  教学内容:

  五年级上册第79-81页《平行四边形的面积》。

  教学目标:

  1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

  2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

  3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。

  学情分析:

  平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

  教学重点:掌握平行四边形面积计算公式。

  教学难点:平行四边形面积计算公式的推导过程。

  教具准备:课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:2块平行四边形彩色纸片、三角板、直尺、剪刀。

  教学过程:

  课前活动:

  1、游戏:小小魔术师。教师出示不规则图形。

  你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)

  2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

  小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的.图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

  设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。

  一、故事引入,激起质疑

  1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。

  一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?

  阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”

  巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”

  2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?

  我们说的毛毯的大小指的是毛毯的什么?

  以前我们学过哪些图形的面积,计算公式是什么?

  3、这节课我们继续研究面积:平行四边形的面积。(板书课题)

  以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。

  设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。

  二、动手操作,探究方法

  (一)猜想

  请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?

  根据学生猜测,板书:可能出现(底×高或底×邻边)

  根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条

  (二)验证

  1、到底哪种猜测正确呢?这就需要我们进行验证才知道。

  2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?

  3、静静地想,想好了吗?

  (三)操作

  1、探究活动步骤:

  想好了,我们来看“深入探究活动”,分三步进行:

  第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。

  第二步:结合剪拼过程,思考这三个问题:大声读出来!

  深入探究学习卡

  ①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?

  ②剪拼后的图形与原来的平行四边形相比,什么不变?”

  ③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系

  第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。

  明白了吗?比比看,哪个小组进行的又快又好!开始吧!

  2、学生活动,教师参与。

  请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。

  3、汇报交流

  (1)汇报剪拼过程。

  一边演示,一边说说你的剪拼过程。

  (2)指导规范叙述:

  (板书:沿高剪平移)并追问:为什么要沿高剪?

  (四)推导

  1、汇报探究的三个问题。

  结合剪拼过程,谁来说说你对这三个问题的思考?

  ①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。

  ②剪拼后的长方形与原来的平行四边形相比,面积不变。

  ③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。

  2、汇报交流:面积不变,长---底,宽---高

  追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?

  请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。

  师板书:平行四边形的面积=底×高

  长方形的面积=长×宽

  设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。

  (五)结论

  1、证实猜想,得出结论:平行四边形的面积=底×高是正确的

  2、用字母表示:S=ah

  三、解决问题,拓展延伸

  1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?

  2、你能算出芸芸家这块菜地的面积吗?

  题上给了这么多信息,应该怎么选择呢?试试看,你一定行!

  看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!

  3、接下来大家要加油噢!看,向你挑战!怕不怕?

  下面两个平行四边形,它们的面积一样大吗?

  小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?

  四、全课小结,完善新知:

  现在大家看:哪块毛毯的面积大呢?

  你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!

  同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!

  设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。

《平行四边形的面积》的教学设计14

  教学内容:

  人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。

  教学目标:

  ①理解并掌握平行四边形的面积计算公式。

  ②会运用公式正确计算平行四边形的面积。

  ③培养操作能力和推理能力,养成积极思考的良好学习习惯。

  教学重点:

  理解并掌握平行四边形的面积计算公式。

  教学难点:

  平行四边形的面积计算公式的推导。

  教具和学具:

  电脑、课件、平行四边形、长方形、剪刀、尺。

  教学过程:

  一、前提测评。

  1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

  2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?

  3、指出平行四边形对边上的高。

  二、认定目标。

  1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]

  2、看到这个课题,大家想学习哪些知识呢?

  三、导学达标。

  (一)、用数方格的方法求平行四边形的面积。

  (1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)

  ⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?

  (3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?

  (二)、推导平行四边形的面积计算公式。

  ⑴、学生实验操作。

  谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。

  在剪、拼前,大家想一想长方形的特征是怎样的?

  a、学生实验操作。

  b、问:你是怎样把平行四边形剪、拼成长方形的?

  c、电脑显示剪拼过程。

  ⑵、讨论拼成的长方形与原平行四边形的.关系。

  a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

  ①平行四边形与拼成的长方形的面积有什么关系?

  ②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

  ③长方形的面积公式怎样表示?

  ④平行四边形的面积公式怎样表示?

  b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)

  c、板书:

  长方形的面积=长×宽

  ‖ ‖ ‖

  平行四边形的面积=底×高

  d、齐读两遍公式

  (三)实际运用。

  1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?

  2、学生运用公式计算方格图中的平行四边形的面积。

  ⑴、学生计算。[板书:6×3=18(平方厘米)]

  ⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。

  3、强调运用公式计算平行四边形面积的条件。

  师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?

  4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。

  ⑴、出示例题,学生默读一遍:

  一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)

  ⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?

  (电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?

  ⑶、学生列式计算,一生板演。

  ⑷、评讲。

  (五)、实际应用训练。

  ①课本p72.2

  ②p73.5

  四、教师总结:你有什么收获?

  五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?

  看谁算得最快?

  六、作业:72页

  评议记录:

  本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。

  本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。

《平行四边形的面积》的教学设计15

  1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

  2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

  3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。

  探索并掌握平行四边形的面积计算方法。

  理解平行四边形面积计算公式的'推导过程。

  电子白板课件、平行四边形模型、剪刀、初步探究学习卡

  一、课前引入、渗透转化。

  1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

  2、播放制作七巧板的视频。

  3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

  二、创设情境,揭示课题。

  1、电子白板导出两个花坛,比一比,哪个大?

  2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

  三、对手操作,探究方法。

  1、利用数方格,初步探究

  2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”

  四、白板演示,验证猜想。

  1、探索把一个平行四边形转化成已学习过的图形。

  2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

  3、平行四边形的面积=底×高

  4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

  五、巩固练习,加深理解。

  1、课件出示例1

  2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

  六、课堂小结,反思回顾。

  回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

【《平行四边形的面积》的教学设计】相关文章:

平行四边形的面积教学设计09-01

面积和面积单位教学设计06-01

圆的面积教学设计04-09

《圆的面积》经典教学设计06-15

《面积》教学设计精品06-08

平行四边形的面积教学设计实用【15篇】07-22

组合图形的面积教学设计04-28

《组合图形的面积》教学设计05-27

五年级《平行四边形面积》教学设计06-13