分数的基本性质教学设计15篇[合集]
作为一名优秀的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。如何把教学设计做到重点突出呢?下面是小编整理的分数的基本性质教学设计,欢迎阅读与收藏。
分数的基本性质教学设计1
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的`规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教学设计2
一、教学目标
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1、教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2、组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=20xx。
3、引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
(二)、比较归纳,揭示规律
1、出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2、集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢?怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3、出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4、讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5、质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
(三)、沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)、多层练习,巩固深化
1、口答。(学生口答后,要求说出是怎样想的?)
2、判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的.主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
分数的基本性质教学设计3
教学内容:
人教版小学数学第十册第107页至108页。
教学目标:
1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:
长方形纸片、彩笔、各种分数卡片。
教学过程
一、创设情境,激发兴趣
1、课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。
“同学们,猴王真的分得不公平吗?”
二、动手操作、导入新课
同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。
任选一小组的同学台前展示实验报告,并汇报结论。
教师根据学生汇报板书:14=28=312
2、组织讨论。
(1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。
3、引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母,分数的大小不变。虽然他们的'分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。
三、比较归纳,揭示规律。
请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。
1、课件出示探究报告。
2、分组汇报,归纳性质。
(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答板书:同时乘上相同的数)
(2)从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答板书:除以)
(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?
(4)综合刚才的探究,你发现什么规律?
根据学生的回答,揭示课题,(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(红笔板书:零除外)
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3、智慧眼(下列的式子是否正确?为什么?)
(1)35=3×25=65(生:35的分子与分母没有同时乘以2,分数的大小改变。)
(2)512=5÷512÷6=12(生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)
(3)112=1×312÷3=34(生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)
(4)25=2×x5×x=2x5x(生:x在这里代表任何数,当x=0时,分数的大小改变。)
4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?
三、回归书本,探源获知
1、浏览课本第107—108页的内容。
2、看了书,你又有什么收获?还有什么疑问吗?
3、师生答疑。
你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?
4、自主学习并完成例2,请二名学生说出思路。
四、多层练习,巩固深化。
1、热身房。35=3×()5×()=9()
824=8÷()24÷()=()3
学生口答后,要求说出是怎样想的?
分数的基本性质教学设计4
教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
重点难点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。
教具学具: 课件,每人一张白纸,一张圆纸片,彩笔
教学时间:1课时
教学流程:
一、复习引入
1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
除法与分数之间有什么联系?
被除数÷ 除数=被除数/除数
教师板书:分数的基本性质
二、动手操作
(1)用分数表示涂色部分。
( )
( ) )
( ) )
①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。
②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)
③继续折成16份,看看原来的3/4现在又成了?(12/16)
(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!
(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分数表示涂色部分。
( ) )
( ) )
( ) )
根据上面的过程,你能得到一组相等的分数吗?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、发现规律
1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成上面的图形,再在小组内交流。
学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。
3/4=6/8=12/16 8/12=4/6=2/3
从这些数字中可以得出:
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)
教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?
得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。
3、课件出一组分数让学生练习填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、练一练(课件出示)
1、判断.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )
( 4)把3/5的.分子加上4,要使分数的大小不变,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )
3、数学游戏(课件出示)
说出相等的分数 1/4和2/8
(1)你能根据分数的基本性质,再写出一组相等的分数?
所写的分数是否相等?你是怎样想的?
(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
五、课本练习中的第1,2题。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
七、板书设计:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
分数的基本性质教学设计5
教学目标
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。
教学重、难点:
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
教学过程:
一、复习旧知,了解学习起点
二、创设情境,激趣引入
课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?
三、探究新知,揭示规律
1.动手操作,形象感知。
(1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。
(2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。
(3)剪。把圆中的阴影部分剪下来。
(4)比。把剪下的阴影部分重叠,比一比结果怎样。
2.观察比较,探究规律。
(1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)
(2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。
学生汇报后,教师用电脑演示。
把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”
(3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)
(4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)
(5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)
讨论题:
①它们之间有什么关系?它们的什么变了?什么没有变?
②从左往右看,是按照什么规律变化的'?从右往左看,又是按照什么规律变化的呢?
(6)学生汇报,师生讨论情况。
师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。
师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)
从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(7)抓住焦点,辨中求真。
的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。
分数的基本性质教学设计6
教学目标
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点:
理解掌握分数的'基本性质。
教学难点:
归纳性质
教学设计
(一)创设情境,引起学生参与兴趣
1、猴王变戏法(学生模仿复习)
除法式子变形
分数与除法变形
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)
3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?
(二)探究新知
1、动手操作、形象感知
请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。
分数的基本性质教学设计7
学习内容分析:
“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。
学习者分析:
学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。
教学目标:
1:经历探索分数基本性质的过程,理解分数基本性质;
2:能运用分数基本性质解决简单的实际问题;
3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。
教学重点:
经历主动探索过程并发现和归纳分数的基本性质。
教学难点:
能利用分数基本性质转化分数。
设计意图:
“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。
基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
教学过程:
一、复习旧知,引入新课
1、直接写出得数:
(1)18÷6= (2)120÷40= (3)2÷3=—
180÷60= 12÷4= 10÷15=—
2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)
3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。
(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)
二、小组合作,探究新知
1、折一折,画一画
师:请同学们拿出准备好的三张长方形纸片。
要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。
2)用分数表示阴影部分,3)将阴影部分剪下来进行比较,看看能发现什么?
2、汇报。(师将一份学生作品贴在黑板上),请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)
3、师出示例2的三幅图,4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。
师:观察第一组的三幅图,平均分的.份数和取出的份数有什么变化吗?第二组的三幅图,你又从中发现了什么?
3、算一算
1)师:刚才大家借助图形发现同一组的三个分数是一样大的。下面,请大家仔细观察每一组中三个相等分数的分子和分母,你又能发现什么?
2)学生先独立思考,后小组里讨论交流想法。
3)汇报。小组派代表汇报,教师根据汇报适当板书。
(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)
三、概括性质,揭示课题
1、师:哪位同学能用一句话把大家发现的规律概括出来呢?
2、师:像右边那样列式行吗? =,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)
3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)
4、师:分数的基本性质和商不变的规律有什么联系?
(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)
三、解释应用,强化认知
1、师:利用分数的基本性质可以解决很多问题。
2、第43页试一试。
观察分母(或分子)发生了什么变化,然后在括号里填上适当的数。学生独立完成后,指名回答,着重让学生说说自己的想法
3、练一练。第44页第4题。
4、判断对错
(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。 ( )
(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。 ( )
(3)3/4的分子乘3,分母除以3,分数的大小不变。 ( )
(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。 ( )
4、数学游戏“你说我对”(图略)
(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)
四、小结回顾,评价激励
这节课你有什么收获?运用分数的基本性质解决问题时要注意什么?
(复习所学知识和方法,加深认识,深化主题)
五、布置作业,拓展延伸
1、课本第44页第1、2、3题。(巩固所学知识)
分数的基本性质教学设计8
一、教学内容
分数的基本性质。(课本第75―76页的例1、例2及“做一做”、第77页练习十四的第1―3题)
二、教材简析
《分数的基本性质》是小学数学教材中重要的一部分,它对于学生理解分数的概念和运算规律具有重要意义。分数的基本性质包括分数的分子和分母的关系,以及分数的大小比较等内容。通过学习分数的基本性质,可以帮助学生建立起对分数运算的基本认识,为后续学习打下坚实的基础。分数的基本性质是数学中的重要规律,通过观察和实践,学生可以逐渐理解分数的特点和规律,从而更好地掌握分数的运算方法。
三、教材处理
以前,随着教育教学理念的不断更新,教师们开始重新审视《分数的基本性质》这一内容的教学方法。传统上,教师通常将其视为一种静态的知识,通过几个例子让学生快速总结规律,然后通过练习加深理解。然而,随着课程改革的深入,教师们开始更加注重学生获取知识的过程。但现在的问题是,有些教学过于碎片化,步骤较小,缺乏足够的引导和探究过程。因此,对于《分数的基本性质》的教学,是否可以有更多的新思路呢?根据新的课程标准,教师应该给予学生更多的机会进行数学活动,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识、思想和方法。
根据这一新的理念,我认为教师可以通过设计具有挑战性的探索活动,让学生在探索的过程中自主发现分数的基本性质。通过这种动态的学习过程,学生可以体验到发现真理的乐趣,感受到数学思维的魅力,培养科学学习的方法。因此,教师在教学中的重点不仅仅是传授规律和应用,更要注重培养学生的思维和方法。
根据以上思考,我将教学重点放在让学生探究发现分数的基本性质上,设计了一种“猜想―验证―反思”的教学模式。在整个课程中,我通过引导学生进行迁移旧知、大胆猜想、实验操作、验证猜想、质疑讨论和完善猜想等一系列探究过程,突出了过程性目标。这种教学模式旨在激发学生的探究兴趣,培养他们的逻辑思维能力和解决问题的能力。
四、设计意图:
这节课主要是根据小学数学课程标准设计的,旨在通过创设问题情境、提出问题、解决问题、建立数学模型、解释数学模型以及运用数学模型等环节,帮助学生更好地理解和掌握数学知识。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。
6、在游戏活动中对数学知识进行拓展运用。
五、教学目标
1、知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
3、过程与方法
(1)在参与观察、操作和讨论等学习活动的过程中,我们通过探索和实践来加深对知识的理解。在这个过程中,我们不仅能够获得直观的认识和经验,还能够培养逻辑思维和解决问题的能力。通过这样的学习方式,我们能够更好地理解分数的基本性质,并能够对其进行简要而合理的说明。
(2)培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的 信息 进行归纳,发展学生的归纳、推理能力。
六、教学重点
理解分数的基本性质
七、教学难点
能运用分数的`基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
八、教学准备
教师:电脑课件
学生:圆纸片长方形纸
九、教学过程:
(一)回顾复习,旧知铺垫。
课件出示复习题
1、商不变的性质
12÷3=()
(12×10)÷(3×10)=()
(12÷3)÷(3÷3)=()
利用什么知识填空的?
2、除法与分数的关系
30÷120=()/()
()÷()=17/51
利用什么知识填空的?
(二)故事引人,揭示课题。
课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?
生1:胖和尚吃的多。
生2:矮和尚吃的多。……
师:到底谁回答得对呢?我们一起动手分饼来求证吧
1、合作探究
师:请同学们组成小组,每组拿出三个大小相等的圆,用阴影部分或涂色表示每个和尚分得的饼,展示出平均分配的情况。学生小组合作,共同展示出分配公平的结果。
师:比较一下阴影部分的大小,结果怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明每个和尚分的饼相等。
师:请同学们用分数表示阴影部分。
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)
2、组织讨论。
师:仔细观察这三个分数什么变了,什么没有变?
让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。
师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3、比较归纳
同学们:从左到右观察,这三个分数的分子和分母都是按照相同的比例变化的,保证了分数的大小不变。
经过几名学生的集体讨论后,他们发现一个有趣的规律:当一个分数的分子和分母同时乘以相同的数时,这个分数的大小保持不变。接下来我们一起来探索这个规律的原因。
师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(边讲边板书)
4、揭示规律
教师小结:大家刚才都认真观察了,发现分数的分子和分母之间有着一种规律性的变化,而分数的大小却保持不变。这正是我们今天要学习的新知识。(板书课题:分数的基本性质)
师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)
师:很好,让我们来总结一下分数的基本性质。在我们的教科书中,分数的基本性质包括:分数的大小比较、分数的加减乘除、分数的化简、分数的约分等。与同学们总结的不同之处在于书中强调了分数的化简和约分这两个概念。这些性质都是非常重要的,能够帮助我们更好地理解和运用分数。让我们继续学习,掌握这些知识吧。
全班讨论:为什么要规定0除外”?
引导:在一个寺庙里,有一个聪明的老和尚和一个小和尚。一天,小和尚拿着一块大饼去找老和尚,请求老和尚帮忙将这块大饼平分成两份。老和尚想了一会儿,然后将大饼切成了两块形状完全相同的小块,然后说:“这样一份给你,另一份给我。”小和尚高兴地接受了。老和尚这样做是因为他知道:只要两份的形状大小完全相同,那么无论怎么分,两份总是公平的。
(三)梳理沟通,灵活运用。
1、分数的基本性质与商不变的性质的联系。
想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?
启发学生说出它们之间的联系:
(1)分子相当于被除数,分母相当于除数;
(2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除以相同的数;
(3)“相同的数”中要求“0除外”;
(4)商不变相当于分数的大小不变。
2、分数基本性质的应用
(1)出示课本第76页例2,把2/3和10/24分别转化成分母是12而大小不变的分数。
(2)认真审题,弄清题意。
要求学生读题后归纳出题目的要求。
a、分母都变成12
b、分数的大小不变
(3)想一想:怎么化,根据什么?
过程要求:
a、学生独立思考,完成题目要求;
b、全班反馈,教师课件显示。
(四)多层练习,巩固深化。
1、完成教科书第77页练习十四的第1―3题。
(1)第1题
此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。
(2)第2题
这道题目涉及分数的大小比较,需要运用分数的基本性质进行计算。学生可以将2/5化简为4/10,或者将4/10化简为2/5,然后进行比较大小。
(3)第3题,说出相等的分数(对口令)
此题是运用分数基本性质的游戏练习,游戏时,让学生以同桌为单位,仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。
2、教科书76页“做一做”
(1)由学生独立完成,然后同学交流。
(2)全班反馈,说一说思维过程。
(五)小结
教师:同学们,经过今天的学习,你有什么收获吗?在分数运算中,我们学到了一个重要的性质:当分子和分母同时乘以或除以相同的数时,分数的值不会改变。这个性质在简化分数运算时非常有用,希望大家能够灵活运用这个知识点。
(六)动脑筋出教室游戏(机动)
请拿出手中的纸片,上面写着不同的分数。请仔细看清自己手中纸片上的分数,然后报出来。报出相同分数的同学先离场,接着是下一个相同分数的同学,最后是剩下的同学离场。请开始游戏。
十、板书设计
商不变的性质
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数与除法的关系
a÷b=a/b(b≠0)
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教学设计9
教学内容:
苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。
预设目标:
1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。
2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。
教学重点:
探索、发现、归纳和理解分数的基本性质。
教学过程:
一、导入
猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。
二、学习新知
1、提供例证
(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?
板书:1/3=2/6=3/9(得出三个相等的分数)
(2)学生折纸找与1/2相等的分数。
你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16
2、诱导探索
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?
3、探究新知
(1)独立思考或小组交流。
(2)探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
4、揭示结论:出示分数的基本性质的内容,并揭示课题。
5、深究结论:
(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?
(2)齐读并理解记忆分数的基本性质。
三、多层练习
1、填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判断。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、课堂作业:
1、第62页“练一练”2。
2、第63页第3题。
3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?
反思
“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的'基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,
从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。
3、让学生在多层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
分数的基本性质教学设计10
教学目标:
1、经历探究“分数的基本性质”的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,感受数学问题的探索性和挑战性,体验数学学习的乐趣。
教学重点:
理解与掌握分数的基本性质。
教学难点:
运用分数的基本性质解决实际问题。
教学准备:
三张一样的正方形纸、CA1课件等。
教学过程:
一、复习准备
1、根据120÷30=4在下面里填数并回答“商不变的性质”是什么?
(120×3)÷(30×3)=
(120÷)÷(30÷)=4
2、根据分数与除法的关系填空。
被除数÷除数=
提问:通过刚才的复习,你们有什么联想或猜想?(分数是否也有与除法类似的性质呢?)
二、实践操作,找出相等的分数
活动与反馈要点:
(1)要使你们的猜想成为科学结论,还必须加以证明。你们能用三张完全一样的正方形纸、尺子、水彩等等材料(工具),通过折纸或其他方法说明自己找的分数(几个)相等吗?(可独立操作完成或与同伴协作完成。)
(2)先让同桌互相说说,现展示学生的方法。
结合展示追问学生:你是怎么知道相等的呢?从这3幅图中你发现什么变了,什么没变?(平衡分的份数和涂色的'份数变了,但涂色部分的大小不变。)
(3)教师利用多媒体演示整个验证过程。从图中可直接看出:==
三、探究交流,归纳分数的基本性质
1、归纳分数的基本性质。
观察这组相等的分数,它们的分子、分母之间有什么变化规律吗?先独立思考,再在小组内与同学交流。
活动与反馈要点:
(1)组织学生展开讨论时,允许学生用自己的语言进行表述。如:“我发现=,分子、分母都乘4,得到的分数大小不变。”
(2)结合学生汇报,教师辅以必要的板书:
(3)根据学生的回答逐步归纳:分数的分子、分母都乘或者除以相同的数(零除外),分数的大小不变。
(4)在初步归纳得到结论后,进一步追问学生:分子、分母同时乘或者除以相同的数,相同的数是不是可以是任何数?这是老师心中的疑问,为什么要把“0”除外?在引发学生讨论与思考中,逐步完善学生的发现,并揭示分数的基本性质。
(5)通过观察、验证,我们得到这个规律。(多媒体演示得出分数的基本性质的过程。)
(6)用笔画出教科书第75页,性质中的重点词,强调“0”除外。(齐读一遍)
(7)(揭示课题)板书:分数的基本性质
(8)质疑。(启发学生在理解“分数的基本性质”的同时,思考并提出问题,师生讨论解决。)
2、沟通“商不变的性质”和“分数的基本性质”之间的联系。
(1)你能说说“商不变的性质”和“分数的基本性质”之间的联系吗?(进一步强化分数与除法的关系。)
(2)多媒体出示小结。(略)
3、运用分数的基本性质解决问题。
教学例2(要求学生独立完成)。和同桌说说你是怎样想的?(指名口答后教师演示帮助学生深入理解。)
四、应用拓展,深化理解
1、完成教科书第76页做一做。反馈后继续完成练习十四第1、2、3、5、8、10题。
2、讨论:李小明同学学习了“分数的基本性质”后,写了这样一道算式:=,你认为他写得对吗?你是怎么想的?
五、本课小结
这节课研究了什么?你认为本节课最大的收获是什么?
教学反思:
1、整节课以学生“自主探索”为核心,由复习旧知导入,提出猜想(或联想),以验证猜想为线索,学生动手操作(独立完成或与同伴协作完成),全体学生积极参与到活动中,经历思考―操作―归纳―总结的过程。学生能用多种方法找到相等的分数,激起学生的探究兴趣。如,有的学生通过折纸验证,有的用涂色、画数轴、画线段图等方法探究,有的学生居然想到计算=0。5、=0。5、=0。5,说明==。整个教学重在让学生自己发现规律,提出问题并解决问题。使学生在经历观察、操作和讨论等学习活动中,感受数学问题的探索性和挑战性,体验数学学习的乐趣。
2、课前,我没有想到学生能在实际操作中想出如此多的方法验证猜想,而且对分数的基本性质理解得如此之深。我深深感到,我们应该相信学生,要与学生在同一平台上互动探究,让数学课堂再现学生与教师、学生与学生之间思维的交流与碰撞。
3、课堂教学不仅是贯彻教师的预设,更应该成为师生共同参与的一种生性活动。教学存在许多不确定性,正是因为这种不确定性的存在,才使我们的课堂教学充满动态美,进而构成师生共同参与、共同创造的精彩课堂。
分数的基本性质教学设计11
教学内容:人教版五年级数学下册57页内容及58、59页练习。
教学目标:
知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。
过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。
情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质。
教学难点:应用分数的基本性质解决问题。
教学准备:预习生成单、作业纸、课件
教学课时:一课时
教学过程:
一、导入新课,揭示课题
1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)
2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。
3、指名学生汇报。
4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。
二、检查预习,自主探究
1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)
2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)
3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,
4.师:其他同学还有补充吗?你们得出这个结论了吗?
三、合作交流,探究新知
1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。
2.出示合作要求(课件),指名学生读一读。
3.学生合作交流,探究学习。
4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?
5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?
6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)
8.再读一读,说说这句话中哪个词比较关键。
9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。
9.教师小结:通过刚才的学习,孩子们的`表现特别出彩,老师相信你们接下来的表现会更棒。
四、应用拓展,新知内化
1.出示例2,指名读题,理解题意。
2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)
3.学生独立在练习本上完成,指名板演,集体订正。
4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。
五、当堂检测
(一)、下面每组中的两个分数是否相等?相等的在括号里画“√”,不相等的画“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分数化成分母是10而大小不变的分数。
===
(四)、涂色表示出与给定分数相等的分数。
(五)、如果一堂课40分钟,哪个班做练习用的时间长?
六、课堂小结:通过这节课的学习,你学会了什么?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这节课最多的考虑就是分数的基本性质这个规律怎样才能让学生真正的夯实,怎样设计才能让学生水到渠成的加深了理解。在练习的设计和过渡语的设计都是关键。
分数的基本性质教学设计12
教学目标
1、经历探索相等分数的分子、分母变化规律的过程,使学生理解分数的基本性质。
2、能运用分数的基本性质把一个分数化成指定分母而大小不变的分数。
3、培养学生观察、分析和抽象概括的能力。
教学重点
理解分数的基本性质
教学难点
发现和归纳分数的基本性质,并能应用它解决相关的问题。
教学过程
一、复习导入
1、说说下面各分数的含义、分数单位及它有几个这样的分数单位。
2、口算
120÷30= 40÷5=
12÷3= 400÷50=
师:观察两组算式,说说你发现了什么?是我们已经学过的除法的什么性质呢?
在除法运算中,被除数和除数同时乘或除以同一个非零数时,商不会改变,这就是除法的商不变性质。
师:除法和分数有什么关系呢?
板书课题:分数的基本性质
二、新授
师:阿凡提同学都熟悉吧?今天老师带来一个有关阿凡提的数学小故事,跟同学分享一下:
有一个农夫爷爷,他有三头同样健壮的牛,要分给他的三个儿子。老大分到第一头牛的一半,老二分到第二头牛的四分之二,老三分到第三头牛的八分之四。老二听了,觉得自己很吃亏,于是三兄弟大吵起来。正巧经过的智者阿凡提问清争吵原因后,他想了想,然后跟他们说了几句话。三兄弟听后恍然大悟,停止了争吵。
同学们,你们知道阿凡提跟三兄弟讲了什么吗?
生自由发挥。
师:这里有三张同样大小的正方形纸,分别代表着地主爷爷家的三块地。我们一起来看看三兄弟分到的地。你能用分数来表示吗?(出示三张纸)
师:通过观察,可知,三兄弟分到的地同样多。那这三个分数是什么关系呢?
生:相等
师:请观察这三个分数的分子和分母,它们之间存在一种规律。经过仔细观察可以发现,这三个分数的`分子和分母在每个分数中都是互换位置的。也就是说,第一个分数的分子和分母交换位置后得到第二个分数,第二个分数的分子和分母再次交换位置后得到第三个分数。这种规律使得这三个分数的大小相等,但分子和分母各不相同。
(预设)生1:分子、分母同时扩大2倍。
生2:分子、分母同时扩大4倍。
师:那从右往左看呢?
总结规律:分数的基本性质是指分数中的分子和分母同时乘或除以相同的数(除数不能为0),分数的大小不变。这一性质可以帮助我们简化分数,使得计算更加方便和简便。
师:和除法商不变的性质对比观察,你有什么发现?
三、分数基本性质的运用
把和化成分母是12而大小不变的分数。
四、巩固练习
五、课堂总结
分数的基本性质教学设计13
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:
理解掌握分数的基本性质。
教学难点:
归纳分数的性质。
学生准备:
长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
3引导观察:请大家观察每个等式中的.两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
分数的基本性质教学设计14
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的`猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
分数的基本性质教学设计15
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察——探索——抽象——概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备:
多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的()中填上合适的数。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的`面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2、引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3、共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4、学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5、组织练习
(1)判断:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0、5/4÷0、5()
分数的分子和分母都乘或除以相同的数,分数的大小不变。()
(2)画一画、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10()/24()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少种填法)
6、通过练习在此性质中哪些是关键词?
7、巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1——3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
【分数的基本性质教学设计】相关文章:
《分数的基本性质》教学设计10-09
分数的基本性质教学设计08-11
《分数的基本性质》教学反思04-14
分数的基本性质教学反思12-18
比的基本性质教学设计05-07
《比的基本性质》教学设计08-17
《分数的基本性质》说课稿07-03
《分数的基本性质》的说课稿06-25
《分数的基本性质》说课稿01-16