正、反比例教学设计

时间:2024-04-03 09:58:48 教学设计 我要投稿
立即下载

正、反比例教学设计

  • 相关推荐

  作为一名默默奉献的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的正、反比例教学设计,希望对大家有所帮助。

正、反比例教学设计

正、反比例教学设计1

  教学内容:

  九年义务教育六年制小学数学第十二册P69——70

  教学目标:

  1、使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系。

  2、进一步提高学生的分析、比较、抽象、概括等能力。

  3、进一步感知数学与生活的联系。

  教学重点:

  弄清正比例和反比例的量的意义

  教学难点:

  找生活中成正、反比例量的实例

  设计理念:

  课堂教学中引导学生回忆正、反比例意义,从学生的已有的生活经验出发,观察、比较、分析,从而在生活中寻找、发现成正、反比例量的实例,弄清正比例、反比例量的意义及其之间的联系与区别,进一步感知数学与生活的联系。

  教学步骤教师活动学生活动

  一、揭示课题

  回顾整理1、师:前几节课,我们学习了什么内容?这节课,我们练习正比例和反比例的有关知识。(板书课题)

  2、回忆正、反比例意义。

  提问:什么叫做正比例关系,什么叫做反比例关系?用字母的式子怎样表示正、反比例的关系?

  学生口答,相互补充

  二、比较分析

  区分特征1、出示练习十三第9题

  观察两张表格并思考回答书中第69页的问题。(表略)

  2、全班交流

  3、引导比较、总结正、反比例的特点(根据学生回答,板书)

  4、讨论:判断两种相关联的量成不成正比例或者反比例关系的关键是什么?

  学生观察、思考

  小组讨论、交流

  相互补充与完善

  讨论、交流

  三、巩固练习

  感知应用

  1、出示练习十三第11题

  先填一填、想一想,再组织讨论和交流。

  要求学生完整地说出判断的.思考过程。

  2、练习十三第10题

  看图填表。

  根据题中的图像,你能说出这幅地图的比例尺是多少吗?图上距离和实际距离成什么比例?为什么?

  在这幅地图上,量得甲、乙两地的图上距离是12厘米,两地的实际距离是多少米?你是怎样想的?

  3、练习十三第12题

  先独立判断,再交流判断理由

  4、A、B、C三种量的关系是:A×B=C。

  如果A一定,那么B和C成()比例

  如果B一定,那么A和C成()比例

  如果C一定,那么A和B成()比例

  5、判断

  (1)两种相关联的量,不成正比例就成反比例。

  ()

  (2)在一定的距离内,车轮周长和它转动的圈数成反比例。

  ()

  (3)X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。

  ()

  6、练习十三第13题

  找出生活中成正比例和成反比例的量的实例,用表格表示出来。

  小组讨论完成表格

  说说是怎样想的?

  7、思考:如果X和Y成正比例,当X=16时,Y=0.8,,如果X=10时,Y是多少?

  独立完成,集体评讲

  填一填,议一议

  判断、讨论

  独立思考

  大组交流

  判断并说明理由

  小组讨论完成表格

  四、总结评价

  质疑反思

  通过这节课的练习,你进一步认识和掌握了哪些知识?还有哪些疑问?你能在生活中找到一些成正比例和成反比例的量的实例,介绍给爸爸、妈妈吗?

正、反比例教学设计2

  一、教学目标:

  (一)、知识目标:

  (1)(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

  (2)(2)通过具体问题的认识进一步认识正比例、反比例的量。

  (3)(3)通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

  (二)、情感目标:

  (1)培养学生善于与人合作、和人分享的意识。

  教学重、难点:

  (1)一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

  (2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。

  教学准备:课件、计算机

  教学过程:

  一、自主整理知识

  二、交流与分享

  (1)小组内交流

  (2)全班分享

  (3)形成知识系统

  变化的量———正比例(意义、图象、应用)——反比例(意义、图象、应用)———形的放缩———比例尺

  三、解决问题:

  1、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

  (1)学生独立思考

  (2)同桌交流

  (3)全班交流

  a、自然语言b、列表c、画图d 、关系式

  2、举出生活中正、反比例的例子

  3、判断并说明理由

  (1)出油率一定,香油的质量与芝麻的质量。

  (2)一捆100米长的电线,用去的.长度与剩下的长度。

  (3)三角形的面积一定,它的底和高。

  (4)一个数与它的倒数。

  三、总结与反思:这节课你有什么收获?

  课后反思:教学中不但关注知识的传授,更关注知识的发生、发展过程;注重知识的学习,更注重培养学生的情感、态度、价值观。

  教材解读:正比例和反比例是刻画变量之间关系的两个重要的模型,是小学阶段学习的两个重要的“关系”(既函数)。对它们的学习也为以后学习函数奠定了重要的基础和经验。由于这两个内容是本期才学习的,因此回顾与反思时,鼓励学生自己独立整理,在此基础上和同伴交流与分享。教材创设了寻找实例、列表、画图等丰富的活动,帮助学生再次体会两个变量之间相互依赖的关系,加深对正、反比例关系的认识。学情分析:通过学习学生已经认识了生活中的一些变量,理解了正比例、反比例的意义,并能运用正、反比例的知识解决一些简单的实际问题。

  设计理念:本节课为复习课,由于学生已是高年级,应该能够自主对知识进行整理,让其形成系统,因此我在整理与回顾时尽量放手,让学生在独立整理的基础上小组交流和全班分享。在这个过程中,老师应该为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。

正、反比例教学设计3

  教学目标:

  1、使学生能正确判断应用题中涉及的量成什么比例关系。

  2、使学生运用正、反比例的意义正确解答应用题。

  3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

  教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

  教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

  教学准备:课件

  教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

  一、铺垫孕伏,建立表象

  1、判断下面每题中的两种量成什么比例关系?

  ○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )

  ○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间

  ○5全校学生做操,每行站的人数和站的行数

  2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

  指名学生口答,老师板书。

  二、创设情境,探究新知

  从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

  1、教学例1

  (1)出示例1(课件演示)让学生读题

  一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

  师:你用什么方法解答,给大家介绍一下如何?(自由回答)

  (提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

  学生解答如下几种:

  解法一:140÷2×5=70×5=350千米

  解法二:140×(5÷2)=140×2.5=350千米

  如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

  A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

  B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

  C它们有什么关系?(行驶的路程和时间成正比例关系)

  D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。

  教师板书:速度一定,路程和时间成正比例。

  师追问:两次行驶的路程和时间的什么相等(比值相等)

  解法三:(用比例方法,怎样列式)

  解:设甲乙两地间的总路长X千米

  140 X 或 140:2=X:5

  2 5 2X=140×5

  X=350

  答:甲乙两地之间公路长350千米。

  小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

  2、怎样检验这道题做得是否正确呢?

  3、变式练习改编题

  出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

  4、教学例2(课件演示)

  (1)出示例2,学生读题

  例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

  提问:

  (1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

  (2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

  学生利用以前的方法解答。

  70×5÷4=350÷4=87.5(千米)

  (3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

  这道题里的路程是一定的', 和 成 比例,所以两次行驶的 和 的 是相等的。

  指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

  (4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

  4X=70×5 X=70×5/4 X=87.5

  答:每小时行驶87.5千米。

  师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

  B)题中哪一种是固定不变的?从哪里看出来?

  C)它们有什么关系?

  D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。

  (5)变式练习(改编题)

  出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

  解:设需要x小时到达

  87.5x=70×5 x=4

  答:需要4小时到达。

  三、归纳总结,揭示意义

  想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

  指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

  四、巩固练习,考考自己(课件演示)

  请你们按照刚才学习例题的方法去分析,只要列出式子就行。

  1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

  2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

  3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

  (1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?

  (2)王师傅4小时生产了200个零件,照这样计算 ?

  4、四选一,每题只能选一次

  (1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

  a.150×30=1200x b.30:150=1200:x

  c.150x=30×1200 d.150:30=1200:x

  (2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

  a.60×8=3x b.60:8=3:x

  c.60×8=(8-3)x d.3:x=8:60

  (3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

  a.5×40=480x b.5:40=x:480

  c.40x=5×480 d.40:5=x:480

  (4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

  a.24×5=6x b.24:5=6:x

  c.(24+6)x=24×5 d.(24+6):x=24:5

  (5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

  a.3×75%=2x b.75%:3=2:x

  c.75%x=2×3 d.3:75%=2:x

  五、分层练习,深化新知

  ○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

  ○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

  12×30=(12+6)×X

  ○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

  120×28=(120+20)×X

  六、全课总结,温故知新

  解比例应用题的一般步骤是什么?(学生自己用语言叙述)

  一般方法和步骤:

  1、判断题目中两种相关联的量是成正比例还是反比例;

  2、设未知量为x,注意写明计量单位;

  3、列出比例式,并解比例式;

  4、检查后写出答案;

  5、特别注意所得答案是否符合实际。

  七、课后反馈,挑战难题

  小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

  “计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

  小明需要你的帮助,你会怎样编题?

《正、反比例教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【正、反比例教学设计】相关文章:

反比例函数教学设计03-07

反比例函数教学反思03-23

教学设计模板-教学设计模板07-14

教学设计01-14

地理教学设计11-30

《荷花》教学设计12-12

化学教学设计01-07

《北京》教学设计01-16

《挑山工》教学设计04-18

正、反比例教学设计

  作为一名默默奉献的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的正、反比例教学设计,希望对大家有所帮助。

正、反比例教学设计

正、反比例教学设计1

  教学内容:

  九年义务教育六年制小学数学第十二册P69——70

  教学目标:

  1、使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系。

  2、进一步提高学生的分析、比较、抽象、概括等能力。

  3、进一步感知数学与生活的联系。

  教学重点:

  弄清正比例和反比例的量的意义

  教学难点:

  找生活中成正、反比例量的实例

  设计理念:

  课堂教学中引导学生回忆正、反比例意义,从学生的已有的生活经验出发,观察、比较、分析,从而在生活中寻找、发现成正、反比例量的实例,弄清正比例、反比例量的意义及其之间的联系与区别,进一步感知数学与生活的联系。

  教学步骤教师活动学生活动

  一、揭示课题

  回顾整理1、师:前几节课,我们学习了什么内容?这节课,我们练习正比例和反比例的有关知识。(板书课题)

  2、回忆正、反比例意义。

  提问:什么叫做正比例关系,什么叫做反比例关系?用字母的式子怎样表示正、反比例的关系?

  学生口答,相互补充

  二、比较分析

  区分特征1、出示练习十三第9题

  观察两张表格并思考回答书中第69页的问题。(表略)

  2、全班交流

  3、引导比较、总结正、反比例的特点(根据学生回答,板书)

  4、讨论:判断两种相关联的量成不成正比例或者反比例关系的关键是什么?

  学生观察、思考

  小组讨论、交流

  相互补充与完善

  讨论、交流

  三、巩固练习

  感知应用

  1、出示练习十三第11题

  先填一填、想一想,再组织讨论和交流。

  要求学生完整地说出判断的.思考过程。

  2、练习十三第10题

  看图填表。

  根据题中的图像,你能说出这幅地图的比例尺是多少吗?图上距离和实际距离成什么比例?为什么?

  在这幅地图上,量得甲、乙两地的图上距离是12厘米,两地的实际距离是多少米?你是怎样想的?

  3、练习十三第12题

  先独立判断,再交流判断理由

  4、A、B、C三种量的关系是:A×B=C。

  如果A一定,那么B和C成()比例

  如果B一定,那么A和C成()比例

  如果C一定,那么A和B成()比例

  5、判断

  (1)两种相关联的量,不成正比例就成反比例。

  ()

  (2)在一定的距离内,车轮周长和它转动的圈数成反比例。

  ()

  (3)X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。

  ()

  6、练习十三第13题

  找出生活中成正比例和成反比例的量的实例,用表格表示出来。

  小组讨论完成表格

  说说是怎样想的?

  7、思考:如果X和Y成正比例,当X=16时,Y=0.8,,如果X=10时,Y是多少?

  独立完成,集体评讲

  填一填,议一议

  判断、讨论

  独立思考

  大组交流

  判断并说明理由

  小组讨论完成表格

  四、总结评价

  质疑反思

  通过这节课的练习,你进一步认识和掌握了哪些知识?还有哪些疑问?你能在生活中找到一些成正比例和成反比例的量的实例,介绍给爸爸、妈妈吗?

正、反比例教学设计2

  一、教学目标:

  (一)、知识目标:

  (1)(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

  (2)(2)通过具体问题的认识进一步认识正比例、反比例的量。

  (3)(3)通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

  (二)、情感目标:

  (1)培养学生善于与人合作、和人分享的意识。

  教学重、难点:

  (1)一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

  (2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。

  教学准备:课件、计算机

  教学过程:

  一、自主整理知识

  二、交流与分享

  (1)小组内交流

  (2)全班分享

  (3)形成知识系统

  变化的量———正比例(意义、图象、应用)——反比例(意义、图象、应用)———形的放缩———比例尺

  三、解决问题:

  1、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

  (1)学生独立思考

  (2)同桌交流

  (3)全班交流

  a、自然语言b、列表c、画图d 、关系式

  2、举出生活中正、反比例的例子

  3、判断并说明理由

  (1)出油率一定,香油的质量与芝麻的质量。

  (2)一捆100米长的电线,用去的.长度与剩下的长度。

  (3)三角形的面积一定,它的底和高。

  (4)一个数与它的倒数。

  三、总结与反思:这节课你有什么收获?

  课后反思:教学中不但关注知识的传授,更关注知识的发生、发展过程;注重知识的学习,更注重培养学生的情感、态度、价值观。

  教材解读:正比例和反比例是刻画变量之间关系的两个重要的模型,是小学阶段学习的两个重要的“关系”(既函数)。对它们的学习也为以后学习函数奠定了重要的基础和经验。由于这两个内容是本期才学习的,因此回顾与反思时,鼓励学生自己独立整理,在此基础上和同伴交流与分享。教材创设了寻找实例、列表、画图等丰富的活动,帮助学生再次体会两个变量之间相互依赖的关系,加深对正、反比例关系的认识。学情分析:通过学习学生已经认识了生活中的一些变量,理解了正比例、反比例的意义,并能运用正、反比例的知识解决一些简单的实际问题。

  设计理念:本节课为复习课,由于学生已是高年级,应该能够自主对知识进行整理,让其形成系统,因此我在整理与回顾时尽量放手,让学生在独立整理的基础上小组交流和全班分享。在这个过程中,老师应该为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。

正、反比例教学设计3

  教学目标:

  1、使学生能正确判断应用题中涉及的量成什么比例关系。

  2、使学生运用正、反比例的意义正确解答应用题。

  3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

  教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

  教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

  教学准备:课件

  教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

  一、铺垫孕伏,建立表象

  1、判断下面每题中的两种量成什么比例关系?

  ○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )

  ○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间

  ○5全校学生做操,每行站的人数和站的行数

  2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

  指名学生口答,老师板书。

  二、创设情境,探究新知

  从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

  1、教学例1

  (1)出示例1(课件演示)让学生读题

  一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

  师:你用什么方法解答,给大家介绍一下如何?(自由回答)

  (提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

  学生解答如下几种:

  解法一:140÷2×5=70×5=350千米

  解法二:140×(5÷2)=140×2.5=350千米

  如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

  A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

  B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

  C它们有什么关系?(行驶的路程和时间成正比例关系)

  D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。

  教师板书:速度一定,路程和时间成正比例。

  师追问:两次行驶的路程和时间的什么相等(比值相等)

  解法三:(用比例方法,怎样列式)

  解:设甲乙两地间的总路长X千米

  140 X 或 140:2=X:5

  2 5 2X=140×5

  X=350

  答:甲乙两地之间公路长350千米。

  小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

  2、怎样检验这道题做得是否正确呢?

  3、变式练习改编题

  出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

  4、教学例2(课件演示)

  (1)出示例2,学生读题

  例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

  提问:

  (1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

  (2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

  学生利用以前的方法解答。

  70×5÷4=350÷4=87.5(千米)

  (3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

  这道题里的路程是一定的', 和 成 比例,所以两次行驶的 和 的 是相等的。

  指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

  (4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

  4X=70×5 X=70×5/4 X=87.5

  答:每小时行驶87.5千米。

  师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

  B)题中哪一种是固定不变的?从哪里看出来?

  C)它们有什么关系?

  D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。

  (5)变式练习(改编题)

  出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

  解:设需要x小时到达

  87.5x=70×5 x=4

  答:需要4小时到达。

  三、归纳总结,揭示意义

  想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

  指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

  四、巩固练习,考考自己(课件演示)

  请你们按照刚才学习例题的方法去分析,只要列出式子就行。

  1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

  2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

  3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

  (1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?

  (2)王师傅4小时生产了200个零件,照这样计算 ?

  4、四选一,每题只能选一次

  (1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

  a.150×30=1200x b.30:150=1200:x

  c.150x=30×1200 d.150:30=1200:x

  (2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

  a.60×8=3x b.60:8=3:x

  c.60×8=(8-3)x d.3:x=8:60

  (3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

  a.5×40=480x b.5:40=x:480

  c.40x=5×480 d.40:5=x:480

  (4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

  a.24×5=6x b.24:5=6:x

  c.(24+6)x=24×5 d.(24+6):x=24:5

  (5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

  a.3×75%=2x b.75%:3=2:x

  c.75%x=2×3 d.3:75%=2:x

  五、分层练习,深化新知

  ○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

  ○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

  12×30=(12+6)×X

  ○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

  120×28=(120+20)×X

  六、全课总结,温故知新

  解比例应用题的一般步骤是什么?(学生自己用语言叙述)

  一般方法和步骤:

  1、判断题目中两种相关联的量是成正比例还是反比例;

  2、设未知量为x,注意写明计量单位;

  3、列出比例式,并解比例式;

  4、检查后写出答案;

  5、特别注意所得答案是否符合实际。

  七、课后反馈,挑战难题

  小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

  “计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

  小明需要你的帮助,你会怎样编题?